Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Antioxidants (Basel) ; 12(8)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37627573

ABSTRACT

Preeclampsia (PE) is a pregnancy-specific syndrome affecting 5-7% of patients. There is no effective treatment available. Early abnormal placental development is associated with oxidative stress (OS) and a release of reactive oxygen species (ROS) in the placenta. This phenomenon leads to downstream signaling, Hypoxia Inducible Factor 1A (HIF1A) stabilization and transcription of the anti-angiogenic factors soluble fms-like tyrosine kinase 1 (sFLT1) and soluble endoglin (sEng), which are known to cause endothelial and trophoblast dysfunction and cardinal features of PE: hypertension, proteinuria and, in severe cases, eclampsia. We tested whether 3-(Hydroxymethyl)-1-oxy-2,2,5,5-tetramethylpyrrolidine (HMP)-a nitroxide-type antioxidant molecule-can reduce placental OS and mitigate PE symptoms in vitro. We induced OS in human trophoblast (HTR-8/SVneo) cells with hydrogen peroxide (H2O2) and assessed whether modulating cell redox function with HMP reduces cell injury, mitochondrial stress and HIF1A and sFLT1 production. Pre-treatment with HMP reduced mitochondrial-derived ROS production, restored LC3B expression and reduced HIF1A and sFLT1 expression in H2O2-exposed HTR-8/SVneo trophoblast cells. HMP improved the mitochondrial electron chain enzyme activity, indicating that a reduction in OS alleviates mitochondrial stress and also reduces anti-angiogenic responses. In reducing placental trophoblast OS, HMP presents a potential novel therapeutic approach for the treatment of PE. Future investigation is warranted regarding the in vivo use of HMP.

2.
Mol Ther Nucleic Acids ; 29: 135-149, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35847173

ABSTRACT

Preeclampsia (PE) is a rising, potentially lethal complication of pregnancy. PE is driven primarily by the overexpression of placental soluble fms-like tyrosine kinase 1 (sFLT1), a validated diagnostic and prognostic marker of the disease when normalized to placental growth factor (PlGF) levels. Injecting cholesterol-conjugated, fully modified, small interfering RNAs (siRNAs) targeting sFLT1 mRNA into pregnant mice or baboons reduces placental sFLT1 and ameliorates clinical signs of PE, providing a strong foundation for the development of a PE therapeutic. siRNA delivery, potency, and safety are dictated by conjugate chemistry, siRNA duplex structure, and chemical modification pattern. Here, we systematically evaluate these parameters and demonstrate that increasing 2'-O-methyl modifications and 5' chemical stabilization and using sequence-specific duplex asymmetry and a phosphocholine-docosanoic acid conjugate enhance placental accumulation, silencing efficiency and safety of sFLT1-targeting siRNAs. The optimization strategy here provides a framework for the chemical optimization of siRNAs for PE as well as other targets and clinical indications.

3.
JCI Insight ; 6(22)2021 11 22.
Article in English | MEDLINE | ID: mdl-34806651

ABSTRACT

Mutations underlying disease in tuberous sclerosis complex (TSC) give rise to tumors with biallelic mutations in TSC1 or TSC2 and hyperactive mammalian target of rapamycin complex 1 (mTORC1). Benign tumors might exhibit de novo expression of immunogens, targetable by immunotherapy. As tumors may rely on ganglioside D3 (GD3) expression for mTORC1 activation and growth, we compared GD3 expression in tissues from patients with TSC and controls. GD3 was overexpressed in affected tissues from patients with TSC and also in aging Tsc2+/- mice. As GD3 overexpression was not accompanied by marked natural immune responses to the target molecule, we performed preclinical studies with GD3 chimeric antigen receptor (CAR) T cells. Polyfunctional CAR T cells were cytotoxic toward GD3-overexpressing targets. In mice challenged with Tsc2-/- tumor cells, CAR T cells substantially and durably reduced the tumor burden, correlating with increased T cell infiltration. We also treated aged Tsc2+/- heterozygous (>60 weeks) mice that carry spontaneous Tsc2-/- tumors with GD3 CAR or untransduced T cells and evaluated them at endpoint. Following CAR T cell treatment, the majority of mice were tumor free while all control animals carried tumors. The outcomes demonstrate a strong treatment effect and suggest that targeting GD3 can be successful in TSC.


Subject(s)
Immunotherapy, Adoptive/methods , Immunotherapy/methods , Tuberous Sclerosis/genetics , Animals , Female , Humans , Mice
4.
PLoS One ; 16(7): e0254158, 2021.
Article in English | MEDLINE | ID: mdl-34242315

ABSTRACT

BACKGROUND: Bioavailable 25-hydroxyvitamin D (25OHD) may be a better indicator of vitamin D sufficiency than total 25OHD. This report describes a novel assay for measuring serum bioavailable 25OHD. METHODS: We developed an assay for 25OHD % bioavailability based on competitive binding of 25OHD tracer between vitamin D-binding protein (DBP)-coated affinity chromatography beads and serum DBP. Bioavailable 25OHD, total 25OHD, albumin, and DBP protein concentrations were measured in 89 samples from hospitalized patients and 42 healthy controls to determine how the DBP binding assay responds to differences in concentrations of DBP and compares to calculated bioavailable 25OHD values. RESULTS: DBP binding assay showed a linear relationship between DBP-bound 25OHD tracer recovered from bead supernatant and DBP calibrator concentrations (y = 0.0017x +0.731, R2 = 0.9961, p<0.001). Inversion of this relationship allowed interpolation of DBP binding equivalents based upon 25OHD tracer recovered. The relationship between DBP binding equivalents and % bioavailability fits a non-linear curve, allowing calculation of % bioavailable 25OHD from DBP binding equivalents (y = 10.625x-0.817, R2 = 0.9961, p<0.001). In hospitalized patient samples, there were linear relationships between DBP protein concentrations and DBP binding equivalents (y = 0.7905x + 59.82, R2 = 0.8597, p<0.001), between measured vs. calculated % bioavailability (y = 0.9528 + 0.0357, R2 = 0.7200, p<0.001), and between absolute concentrations of measured vs. calculated bioavailable 25OHD (y = 1.2403 + 0.1221, R2 = 0.8913, p<0.001). CONCLUSIONS: The DBP-binding assay for bioavailable 25OHD shows expected changes in 25OHD % bioavailability in response to changes in DBP concentrations and concordance with calculated bioavailable 25OHD concentrations.


Subject(s)
Vitamin D/analogs & derivatives , Adult , Biological Availability , Humans
5.
Hypertension ; 76(3): 875-883, 2020 09.
Article in English | MEDLINE | ID: mdl-32654553

ABSTRACT

Elevated circulating sFLT-1 (soluble fms-like tyrosine kinase) and low levels of its ligand, PlGF (placental growth factor), are key characteristics of preeclampsia. However, it is unclear if the low levels of plasma PlGF noted during preeclampsia are due to decreased placental production of PlGF or due to binding of PlGF by increased circulating sFLT-1. Here, we describe a biochemical procedure to dissociate PlGF-sFLT-1 complex ex vivo and when used in conjunction with an immunoassay platform, demonstrate a method to measure total and free PlGF in human blood samples. Using this method, we noted that plasma free PlGF levels were significantly lower in preeclampsia (N=22) than in nonhypertensive controls (N=24; mean, 314 versus 686 pg/mL, P<0.05), but total PlGF levels were not different (mean, 822 versus 800 pg/mL, P=0.49). In contrast, total sFLT-1 levels were significantly higher in preeclampsia than in nonhypertensive controls (mean, 16 957 versus 3029 pg/mL, P<0.01) and sFLT-1 levels correlated with bound PlGF levels (bound PlGF=total PlGF-free PlGF) in these samples (r2=0.68). We confirmed these findings in an independent cohort of subjects (N=49). Furthermore, we did not detect any difference in PlGF mRNA by quantitative polymerase chain reaction or in PlGF protein expression by immunohistochemistry in preeclamptic placentas when compared with nonhypertensive controls. In contrast, sFLT-1 mRNA and protein levels were upregulated in placentas from women with preeclampsia. Taken together with prior studies, our results provide evidence that decrease in circulating PlGF noted during preeclampsia is largely mediated by excess circulating sFLT-1.


Subject(s)
Placenta Growth Factor , Placenta/metabolism , Pre-Eclampsia/blood , Vascular Endothelial Growth Factor Receptor-1 , Adult , Biomarkers/blood , Biomarkers/metabolism , Female , Humans , Immunoassay/methods , Immunohistochemistry , Neovascularization, Physiologic , Placenta Growth Factor/blood , Placenta Growth Factor/metabolism , Pre-Eclampsia/diagnosis , Pregnancy , Vascular Endothelial Growth Factor Receptor-1/blood , Vascular Endothelial Growth Factor Receptor-1/metabolism
6.
Kidney Int Rep ; 4(12): 1735-1741, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31844810

ABSTRACT

INTRODUCTION: Soluble fms-like tyrosine kinase 1 (sFLT1) is a splice variant of the vascular endothelial growth factor (VEGF) receptor lacking the transmembrane and cytoplasmic domains and acts as a powerful antagonist of VEGF signaling. Plasma sFLT1 levels are higher in patients with chronic kidney disease (CKD) and correlate with renal dysfunction. The source of plasma sFLT1 in CKD is unclear. METHODS: Fifty-two renal biopsies were studied for sFLT1 expression using immunohistochemistry and evaluated on a 0-4 grading scale of positive cells within inflammatory infiltrates. These included drug-induced interstitial nephritis (6); allografts (12), with polyomavirus nephritis (3); diabetes mellitus (10); lupus glomerulonephritis (6); pauci-immune vasculitis (7); IgA nephropathy (6); and miscellaneous CKD (5). RESULTS: Forty-seven biopsies had inflammatory infiltrates of which 37 had sFLT1-positive cells: of these biopsies, 3 were grade 4, i.e., had cells that constituted more than 50% of the inflammatory infiltrate, 9 were grade 3 (25%-50%), 5 were grade 2 (10%-25%), 3 were grade 1 (10%), and 17 were grade 0.5 (<10%). There was a robust correlation (r2 = 0.89) between degree of inflammation and sFLT1-positive cells. CD68/sFLT1 co-immunostaining studies indicated that sFLT1-positive cells were histiocytes. The surrounding capillary network was reduced. CONCLUSION: sFLT1-positive histiocytes are generally part of the inflammatory infiltrates noted in CKD and are particularly abundant in forms of interstitial nephritis. Their presence promotes an anti-angiogenic state locally in the tubulointerstitium that could inhibit capillary repair, contribute to peritubular capillary loss, and enhance fibrosis in CKD.

7.
Am J Pathol ; 189(1): 104-114, 2019 01.
Article in English | MEDLINE | ID: mdl-30315766

ABSTRACT

Although the cause of preeclampsia, a pregnancy complication with significant maternal and neonatal morbidity, has not been fully characterized, placental ischemia attributable to impaired spiral artery remodeling and abnormal secretion of antiangiogenic factors are thought to be important in the pathogenesis of the disease. Placental ischemia could impair trophoblast mitochondrial function and energy production, leading to the release of reactive oxygen species (ROS). ROS have been shown to stabilize hypoxia-inducible factor (HIF)-1α, which, in turn, may induce transcription of antiangiogenic factors, soluble fms-like tyrosine kinase 1 (sFLT1), and soluble endoglin in trophoblasts. Herein, we tested whether the angiogenic imbalance and oxidative stress in the preeclamptic placenta may be prevented by improving mitochondrial function. First, to evaluate the cause-effect relationship between mitochondrial function and sFLT1 production, a human trophoblast primary cell culture model was established in which hypoxia induced mitochondrial ROS production and concurrent sFLT1 increase. Second, treatment with AP39, a novel mitochondria-targeted hydrogen sulfide donor, prevented ROS production, reduced HIF-1α protein levels, and diminished sFLT1 production. Finally, AP39, a modulator of mitochondrial bioenergetics enhanced cytochrome c oxidase activity, reversed oxidative stress and antiangiogenic response in hypoxic trophoblasts. These results suggest that placental hypoxia induces ROS production, HIF-1α stabilization, and sFLT1 up-regulation; these pathophysiological alterations can be attenuated by mitochondrial-targeted antioxidants.


Subject(s)
Energy Metabolism , Mitochondria , Organophosphorus Compounds/pharmacology , Oxidative Stress , Pre-Eclampsia , Thiones/pharmacology , Trophoblasts , Angiogenesis Inhibitors/metabolism , Cell Hypoxia/drug effects , Cells, Cultured , Electron Transport Complex IV/metabolism , Endoglin/metabolism , Energy Metabolism/drug effects , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Organophosphorus Compounds/chemistry , Oxidative Stress/drug effects , Pre-Eclampsia/drug therapy , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Pregnancy , Reactive Oxygen Species/metabolism , Thiones/chemistry , Trophoblasts/metabolism , Trophoblasts/pathology , Vascular Endothelial Growth Factor Receptor-1/biosynthesis
8.
Nat Biotechnol ; 2018 Nov 19.
Article in English | MEDLINE | ID: mdl-30451990

ABSTRACT

Preeclampsia is a placentally induced hypertensive disorder of pregnancy that is associated with substantial morbidity and mortality to mothers and fetuses. Clinical manifestations of preterm preeclampsia result from excess circulating soluble vascular endothelial growth factor receptor FLT1 (sFLT1 or sVEGFR1) of placental origin. Here we identify short interfering RNAs (siRNAs) that selectively silence the three sFLT1 mRNA isoforms primarily responsible for placental overexpression of sFLT1 without reducing levels of full-length FLT1 mRNA. Full chemical stabilization in the context of hydrophobic modifications enabled productive siRNA accumulation in the placenta (up to 7% of injected dose) and reduced circulating sFLT1 in pregnant mice (up to 50%). In a baboon preeclampsia model, a single dose of siRNAs suppressed sFLT1 overexpression and clinical signs of preeclampsia. Our results demonstrate RNAi-based extrahepatic modulation of gene expression with nonformulated siRNAs in nonhuman primates and establish a path toward a new treatment paradigm for patients with preterm preeclampsia.

9.
Clin Cancer Res ; 24(23): 6078-6097, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30076136

ABSTRACT

PURPOSE: The BRAFV600E oncogene modulates the papillary thyroid carcinoma (PTC) microenvironment, in which pericytes are critical regulators of tyrosine-kinase (TK)-dependent signaling pathways. Although BRAFV600E and TK inhibitors are available, their efficacy as bimodal therapeutic agents in BRAFV600E-PTC is still unknown. EXPERIMENTAL DESIGN: We assessed the effects of vemurafenib (BRAFV600E inhibitor) and sorafenib (TKI) as single agents or in combination in BRAFWT/V600E-PTC and BRAFWT/WT cells using cell-autonomous, pericyte coculture, and an orthotopic mouse model. We also used BRAFWT/V600E-PTC and BRAFWT/WT-PTC clinical samples to identify differentially expressed genes fundamental to tumor microenvironment. RESULTS: Combined therapy blocks tumor cell proliferation, increases cell death, and decreases motility via BRAFV600E inhibition in thyroid tumor cells in vitro. Vemurafenib produces cytostatic effects in orthotopic tumors, whereas combined therapy (likely reflecting sorafenib activity) generates biological fluctuations with tumor inhibition alternating with tumor growth. We demonstrate that pericytes secrete TSP-1 and TGFß1, and induce the rebound of pERK1/2, pAKT and pSMAD3 levels to overcome the inhibitory effects of the targeted therapy in PTC cells. This leads to increased BRAFV600E-PTC cell survival and cell death refractoriness. We find that BRAFWT/V600E-PTC clinical samples are enriched in pericytes, and TSP1 and TGFß1 expression evoke gene-regulatory networks and pathways (TGFß signaling, metastasis, tumor growth, tumor microenvironment/ECM remodeling functions, inflammation, VEGF ligand-VEGF receptor interactions, immune modulation, etc.) in the microenvironment essential for BRAFWT/V600E-PTC cell survival. Critically, antagonism of the TSP-1/TGFß1 axis reduces tumor cell growth and overcomes drug resistance. CONCLUSIONS: Pericytes shield BRAFV600E-PTC cells from targeted therapy via TSP-1 and TGFß1, suggesting this axis as a new therapeutic target for overcoming resistance to BRAFV600E and TK inhibitors.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Drug Resistance, Neoplasm , Pericytes/drug effects , Pericytes/metabolism , Thyroid Neoplasms/metabolism , Transforming Growth Factor beta1/metabolism , Vemurafenib/pharmacology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Biomarkers, Tumor , Cell Line, Tumor , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Mice , Models, Biological , Signal Transduction/drug effects , Sorafenib/pharmacology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/genetics , Thyroid Neoplasms/pathology , Transforming Growth Factor beta1/genetics , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics , Xenograft Model Antitumor Assays
10.
Oncotarget ; 8(49): 84743-84760, 2017 Oct 17.
Article in English | MEDLINE | ID: mdl-29156680

ABSTRACT

PURPOSE: Papillary thyroid carcinoma (PTC) is the most frequent endocrine tumor. BRAFV600E represents the PTC hallmark and is targeted with selective inhibitors (e.g. vemurafenib). Although there have been promising results in clinical trials using these inhibitors, most patients develop resistance and progress. Tumor clonal diversity is proposed as one mechanism underlying drug resistance. Here we have investigated mechanisms of primary and secondary resistance to vemurafenib in BRAFWT/V600E-positive PTC patient-derived cells with P16-/- (CDKN2A-/-). EXPERIMENTAL DESIGN: Following treatment with vemurafenib, we expanded a sub-population of cells with primary resistance and characterized them genetically and cytogenetically. We have used exome sequencing, metaphase chromosome analysis, FISH and oligonucleotide SNP-microarray assays to assess clonal evolution of vemurafenib-resistant cells. Furthermore, we have validated our findings by networks and pathways analyses using PTC clinical samples. RESULTS: Vemurafenib-resistant cells grow similarly to naïve cells but are refractory to apoptosis upon treatment with vemurafenib, and accumulate in G2-M phase. We find that vemurafenib-resistant cells show amplification of chromosome 5 and de novo mutations in the RBM (RNA-binding motifs) genes family (i.e. RBMX, RBM10). RBMX knockdown in naïve-cells contributes to tetraploidization, including expansion of clones with chromosome 5 aberrations (e.g. isochromosome 5p). RBMX elicits gene regulatory networks with chromosome 5q cancer-associated genes and pathways for G2-M and DNA damage-response checkpoint regulation in BRAFWT/V600E-PTC. Importantly, combined therapy with vemurafenib plus palbociclib (inhibitor of CDK4/6, mimicking P16 functions) synergistically induces stronger apoptosis than single agents in resistant-cells and in anaplastic thyroid tumor cells harboring the heterozygous BRAFWT/V600E mutation. CONCLUSIONS: Critically, our findings suggest for the first time that targeting BRAFWT/V600E and CDK4/6 represents a novel therapeutic strategy to treat vemurafenib-resistant or vemurafenib-naïve radioiodine-refractory BRAFWT/V600E-PTC. This combined therapy could prevent selection and expansion of aggressive PTC cell sub-clones with intrinsic resistance, targeting tumor cells either with primary or secondary resistance to BRAFV600E inhibitor.

11.
PLoS One ; 11(6): e0156800, 2016.
Article in English | MEDLINE | ID: mdl-27304671

ABSTRACT

Pemphigus vulgaris (PV) is characterized by IgG1 and IgG4 autoantibodies to desmoglein (Dsg) 3, causing suprabasal blistering of skin and mucous membranes. IgG4 is the dominant autoantibody subclass in PV and correlates with disease activity, whereas IgG1 can be associated with remittent disease. It is unknown if switching the same variable region between IgG4 and IgG1 directly impacts pathogenicity. Here, we tested whether three pathogenic PV monoclonal antibodies (mAbs) from three different patients demonstrate differences in antigen affinity, epitope specificity, or pathogenicity when expressed as IgG1 or IgG4. F706 anti-Dsg3 IgG4 and F779 anti-Dsg3 IgG1, previously isolated as heterohybridomas, and Px43, a monovalent anti-Dsg3/Dsg1 IgG antibody isolated by phage display, were subcloned to obtain paired sets of IgG1 and IgG4 mAbs. Using ELISA and cell surface staining assays, F706 and F779 demonstrated similar antigen binding affinities of IgG1 and IgG4, whereas Px43 showed 3- to 8-fold higher affinity of IgG4 versus IgG1 by ELISA, but identical binding affinities to human skin, perhaps due to targeting of a quaternary epitope best displayed in tissues. All 3 mAb pairs targeted the same extracellular cadherin (EC) domain on Dsg3, caused Dsg3 internalization in primary human keratinocytes, and caused suprabasal blisters in human skin at comparable doses. We conclude that switching IgG1 and IgG4 subclasses of pathogenic PV mAbs does not directly affect their antigen binding or pathogenic properties.


Subject(s)
Autoantibodies/immunology , Desmoglein 3/immunology , Epitopes/immunology , Immunoglobulin G/immunology , Pemphigus/immunology , Antibodies, Monoclonal/immunology , Antibody Affinity/immunology , Antibody Specificity/immunology , Cells, Cultured , Desmoglein 3/metabolism , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Exfoliatins/immunology , Humans , Keratinocytes/cytology , Keratinocytes/immunology , Keratinocytes/metabolism , Microscopy, Fluorescence , Skin/immunology , Skin/metabolism , Skin/pathology
12.
Prostate ; 76(14): 1257-70, 2016 10.
Article in English | MEDLINE | ID: mdl-27324746

ABSTRACT

BACKGROUND: Chimeric antigen receptor (CAR)-modified "designer" T cells (dTc, CAR-T) against PSMA selectively target antigen-expressing cells in vitro and eliminate tumors in vivo. Interleukin 2 (IL2), widely used in adoptive therapies, was proven essential in animal models for dTc to eradicate established solid tumors. METHODS: Patients under-went chemotherapy condi-tion-ing, followed by dTc dosing under a Phase I escalation with continuous infusion low dose IL2 (LDI). A target of dTc escalation was to achieve ≥20% engraftment of infused activated T cells. RESULTS: Six patients enrolled with doses prepared of whom five were treated. Patients received 10(9) or 10(10) autologous T cells, achieving expansions of 20-560-fold over 2 weeks and engraftments of 5-56%. Pharmacokinetic and pharmacodynamic analyses established the impact of conditioning to promote expansion and engraftment of the infused T cells. Unexpectedly, administered IL2 was depleted up to 20-fold with high engraftments of activated T cells (aTc) in an inverse correlation (P < 0.01). Clinically, no anti-PSMA toxicities were noted, and no anti-CAR reactivities were detected post-treatment. Two-of-five patients achieved clinical partial responses (PR), with PSA declines of 50% and 70% and PSA delays of 78 and 150 days, plus a minor response in a third patient. Responses were unrelated to dose size (P = 0.6), instead correlating inversely with engraftment (P = 0.06) and directly with plasma IL2 (P = 0.03), suggesting insufficient IL2 with our LDI protocol to support dTc anti-tumor activity under optimal (high) dTc engraftments. CONCLUSIONS: Under a Phase I dose escalation in prostate cancer, a 20% engraftment target was met or exceeded in three subjects with adequate safety, leading to study conclusion. Clinical responses were obtained but were suggested to be restrained by low plasma IL2 when depleted by high levels of engrafted activated T cells. This report presents a unique example of how the pharmaco-dynamics of "drug-drug" interactions may have a critical impact on the efficacy of their co-application. A new Pilot/Phase II trial is planned to test moderate dose IL2 (MDI) together with high dTc engraftments for anticipated improved therapeutic efficacy. Prostate 76:1257-1270, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Glutamate Carboxypeptidase II/antagonists & inhibitors , Interleukin-2/administration & dosage , Prostatic Neoplasms/diagnosis , Prostatic Neoplasms/therapy , Receptors, Antigen, T-Cell/administration & dosage , T-Lymphocytes/transplantation , Aged , Antigens, Surface/blood , Glutamate Carboxypeptidase II/blood , Humans , Male , Middle Aged , Prostatic Neoplasms/blood , Transplantation, Autologous/methods , Treatment Outcome
13.
J Clin Invest ; 126(7): 2561-74, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27270170

ABSTRACT

Preeclampsia is a hypertensive disorder of pregnancy in which patients develop profound sensitivity to vasopressors, such as angiotensin II, and is associated with substantial morbidity for the mother and fetus. Enhanced vasoconstrictor sensitivity and elevations in soluble fms-like tyrosine kinase 1 (sFLT1), a circulating antiangiogenic protein, precede clinical signs and symptoms of preeclampsia. Here, we report that overexpression of sFlt1 in pregnant mice induced angiotensin II sensitivity and hypertension by impairing endothelial nitric oxide synthase (eNOS) phosphorylation and promoting oxidative stress in the vasculature. Administration of the NOS inhibitor l-NAME to pregnant mice recapitulated the angiotensin sensitivity and oxidative stress observed with sFlt1 overexpression. Sildenafil, an FDA-approved phosphodiesterase 5 inhibitor that enhances NO signaling, reversed sFlt1-induced hypertension and angiotensin II sensitivity in the preeclampsia mouse model. Sildenafil treatment also improved uterine blood flow, decreased uterine vascular resistance, and improved fetal weights in comparison with untreated sFlt1-expressing mice. Finally, sFLT1 protein expression inversely correlated with reductions in eNOS phosphorylation in placental tissue of human preeclampsia patients. These data support the concept that endothelial dysfunction due to high circulating sFLT1 may be the primary event leading to enhanced vasoconstrictor sensitivity that is characteristic of preeclampsia and suggest that targeting sFLT1-induced pathways may be an avenue for treating preeclampsia and improving fetal outcomes.


Subject(s)
Angiotensin II/metabolism , Nitric Oxide Synthase Type III/metabolism , Pre-Eclampsia/metabolism , Vascular Endothelial Growth Factor Receptor-1/metabolism , Angiotensins/metabolism , Animals , Blood Pressure , Disease Models, Animal , Female , Humans , Male , Mice , NG-Nitroarginine Methyl Ester/chemistry , Oxidative Stress , Phosphorylation , Placenta/metabolism , Pregnancy , Pregnancy, Animal , Signal Transduction , Sildenafil Citrate/therapeutic use , Treatment Outcome
14.
Nat Commun ; 5: 4167, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24942562

ABSTRACT

Pemphigus vulgaris (PV) is a potentially fatal blistering disease caused by autoantibodies (autoAbs) against desmoglein 3 (Dsg3). Here, we clone anti-Dsg3 antibodies (Abs) from four PV patients and identify pathogenic VH1-46 autoAbs from all four patients. Unexpectedly, VH1-46 autoAbs had relatively few replacement mutations. We reverted antibody somatic mutations to their germline sequences to determine the requirement of mutations for autoreactivity. Three of five VH1-46 germline-reverted Abs maintain Dsg3 binding, compared with zero of five non-VH1-46 germline-reverted Abs. Site-directed mutagenesis of VH1-46 Abs demonstrates that acidic amino-acid residues introduced by somatic mutation or heavy chain VDJ recombination are necessary and sufficient for Dsg3 binding. Our data suggest that VH1-46 autoantibody gene usage is commonly found in PV because VH1-46 Abs require few to no mutations to acquire Dsg3 autoreactivity, which may favour their early selection. Common VH gene usage indicates common humoral immune responses, even among unrelated patients.


Subject(s)
Autoantibodies/genetics , Complementarity Determining Regions/genetics , Immunity, Humoral , Pemphigus/genetics , Pemphigus/immunology , Autoantibodies/immunology , Complementarity Determining Regions/immunology , Desmoglein 3/genetics , Desmoglein 3/immunology , Humans
15.
Mol Ther Oncolytics ; 1: 14003, 2014.
Article in English | MEDLINE | ID: mdl-27119093

ABSTRACT

Carbonic anhydrase IX (CAIX) is a tumor-associated antigen and marker of hypoxia that is overexpressed on > 90% of clear-cell type renal cell carcinoma (RCC) but not on neighboring normal kidney tissue. Here, we report on the construction of two chimeric antigen receptors (CARs) that utilize a carbonic anhydrase (CA) domain mapped, human single chain antibody (scFv G36) as a targeting moiety but differ in their capacity to provide costimulatory signaling for optimal T cell proliferation and tumor cell killing. The resulting anti-CAIX CARs were expressed on human primary T cells via lentivirus transduction. CAR-transduced T cells (CART cells) expressing second-generation G36-CD28-TCRζ exhibited more potent in vitro antitumor effects on CAIX(+) RCC cells than first-generation G36-CD8-TCRζ including cytotoxicity, cytokine secretion, proliferation, and clonal expansion. Adoptive G36-CD28-TCRζ CART cell therapy combined with high-dose interleukin (IL)-2 injection also lead to superior regression of established RCC in nude mice with evidence of tumor cell apoptosis and tissue necrosis. These results suggest that the fully human G36-CD28-TCRζ CARs should provide substantial improvements over first-generation mouse anti-CAIX CARs in clinical use through reduced human anti-mouse antibody responses against the targeting scFv and administration of lower doses of T cells during CART cell therapy of CAIX(+) RCC.

16.
Prostate ; 74(3): 286-96, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24174378

ABSTRACT

BACKGROUND: Adoptive immunotherapy by infusion of designer T cells (dTc) engineered with chimeric antigen receptors (CARs) for tumoricidal activity represents a potentially highly specific modality for the treatment of cancer. In this study, 2nd generation (gen) anti-prostate specific membrane antigen (PSMA) dTc were developed for improving the efficacy of previously developed 1st gen dTc for prostate cancer immunotherapy. The 1st gen dTc are modified with chimeric immunoglobulin-T cell receptor (IgTCR) while the 2nd gen dTc are engineered with an immunoglobulin-CD28-T cell receptor (IgCD28TCR), which incorporates a CD28 costimulatory signal for optimal T cell activation. METHODS: A 2nd gen anti-PSMA IgCD28TCR CAR was constructed by inserting the CD28 signal domain into the 1st gen CAR. 1st and 2nd gen anti-PSMA dTc were created by transducing human T cells with anti-PSMA CARs and their antitumor efficacy was compared for specific activation on PSMA-expressing tumor contact, cytotoxicity against PSMA-expressing tumor cells in vitro, and suppression of tumor growth in an animal model. RESULTS: The 2nd gen dTc can be optimally activated to secrete larger amounts of cytokines such as IL2 and IFNγ than 1st gen and to proliferate more vigorously on PSMA-expressing tumor contact. More importantly, the 2nd gen dTc preserve the PSMA-specific cytotoxicity in vitro and suppress tumor growth in animal models with significant higher potency. CONCLUSIONS: Our results demonstrate that 2nd gen anti-PSMA designer T cells exhibit superior antitumor functions versus 1st gen, providing a rationale for advancing this improved agent toward clinical application in prostate cancer immunotherapy.


Subject(s)
Immunotherapy, Adoptive/methods , Prostatic Neoplasms/therapy , T-Lymphocytes/immunology , Animals , Antibodies, Monoclonal , CD28 Antigens/immunology , Cell Line, Tumor , Cell Membrane/immunology , Cytotoxicity, Immunologic , Genetic Vectors/genetics , Humans , Interferon-gamma/metabolism , Interleukin-2/metabolism , Jurkat Cells , Lymphocyte Activation , Male , Mice , Mice, Nude , Prostate/immunology , Receptors, Antigen/genetics , Receptors, Antigen/immunology , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Recombinant Fusion Proteins , Retroviridae/genetics , Transduction, Genetic , Xenograft Model Antitumor Assays
17.
J Immunol ; 190(8): 3939-48, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23487420

ABSTRACT

NK cells that populate the decidua are important regulators of normal placentation. In contrast to peripheral blood NK cells, decidual NK (dNK) cells lack cytotoxicity, secrete proangiogenic factors, and regulate trophoblast invasion. In this study we show that exposure to a combination of hypoxia, TGF-ß1, and a demethylating agent results in NK cells that express killer cell Ig-like receptors, the dNK cell markers CD9 and CD49a, and a dNK pattern of chemokine receptors. These cells secrete vascular endothelial growth factor (a potent proangiogenic molecule), display reduced cytotoxicity, and promote invasion of human trophoblast cell lines. These findings have potential therapeutic applications for placental disorders associated with altered NK cell biology.


Subject(s)
Angiogenic Proteins/physiology , CD56 Antigen/physiology , Immunophenotyping , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Receptors, IgG/physiology , Receptors, KIR/physiology , Angiogenic Proteins/biosynthesis , Angiogenic Proteins/blood , Azacitidine/analogs & derivatives , Azacitidine/pharmacology , CD56 Antigen/biosynthesis , CD56 Antigen/blood , Cell Line, Transformed , Cell Movement/immunology , Cytoplasmic Granules/immunology , Decidua/cytology , Decidua/immunology , Decidua/metabolism , Decitabine , Female , GPI-Linked Proteins/biosynthesis , GPI-Linked Proteins/blood , GPI-Linked Proteins/physiology , Human Umbilical Vein Endothelial Cells , Humans , Receptors, IgG/biosynthesis , Receptors, IgG/blood , Receptors, KIR/biosynthesis , Receptors, KIR/blood
18.
Mol Cancer Ther ; 11(11): 2451-61, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22869555

ABSTRACT

Cutaneous T-cell lymphoma (CTCL) is a heterogeneous group of neoplastic disorders characterized by clonally derived and skin-homing malignant T cells that express high level of chemokine receptor CCR4, which is associated with their skin-homing capacity. CCR4 is also highly expressed on T-regulatory cells (Tregs) that can migrate to several different types of chemotactic ligand CCL17- and CCL22-secreting tumors to facilitate tumor cell evasion from immune surveillance. Thus, its high-level expression on CTCL cells and Tregs makes CCR4 a potential ideal target for antibody-based immunotherapy for CTCL and other types of solid tumors. Here, we conducted humanization and affinity optimization of a murine anti-CCR4 monoclonal antibody (mAb), mAb1567, that recognizes both the N-terminal and extracellular domains of CCR4 with high affinity and inhibits chemotaxis of CCR4(+) CTCL cells. In a mouse CTCL tumor model, mAb1567 exhibited a potent antitumor effect and in vitro mechanistic studies showed that both complement-dependent cytotoxicity (CDC) and neutrophil-mediated antibody-dependent cellular cytotoxicity (ADCC) likely mediated this effect. mAb1567 also exerts human NK cell-mediated ADCC activity in vitro. Moreover, mAb1567 also effectively inhibits chemotaxis of CD4(+)CD25(high) Tregs via CCL22 and abrogates Treg suppression activity in vitro. An affinity-optimized variant of humanized mAb1567, mAb2-3, was selected for further preclinical development based on its higher binding affinity and more potent ADCC and CDC activities. Taken together, this high-affinity humanized mAb2-3 with potent antitumor effect and a broad range of mechanisms of action may provide a novel immunotherapy for CTCL and other solid tumors.


Subject(s)
Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antibody-Dependent Cell Cytotoxicity/drug effects , Lymphoma, T-Cell, Cutaneous/drug therapy , Lymphoma, T-Cell, Cutaneous/pathology , Receptors, CCR4/immunology , T-Lymphocytes, Regulatory/immunology , Amino Acid Sequence , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/immunology , Cell Line, Tumor , Chemotaxis/drug effects , Cloning, Molecular , Complement System Proteins/immunology , Humans , Mice , Mice, SCID , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Protein Binding/drug effects , T-Lymphocytes, Regulatory/drug effects
19.
J Biomed Biotechnol ; 2010: 386545, 2010.
Article in English | MEDLINE | ID: mdl-20625484

ABSTRACT

The successful ex vivo expansion of a large numbers of T cells is a prerequisite for adoptive immunotherapy. In this study, we found that cell density had important effects on the process of expansion of T cells in vitro. Resting T cells were activated to expand at high cell density but failed to be activated at low cell density. Activated T cells (ATCs) expanded rapidly at high cell density but underwent apoptosis at low cell density. Our studies indicated that low-cell-density related ATC death is mediated by oxidative stress. Antioxidants N-acetylcysteine, catalase, and albumin suppressed elevated reactive oxygen species (ROS) levels in low-density cultures and protected ATCs from apoptosis. The viability of ATCs at low density was preserved by conditioned medium from high-density cultures of ATCs in which the autocrine survival factor was identified as catalase. We also found that costimulatory signal CD28 increases T cell activation at lower cell density, paralleled by an increase in catalase secretion. Our findings highlight the importance of cell density in T cell activation, proliferation, survival and apoptosis and support the importance of maintaining T cells at high density for their successful expansion in vitro.


Subject(s)
Immunotherapy, Adoptive , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Adult , Apoptosis , Autocrine Communication/immunology , CD28 Antigens/metabolism , Catalase/metabolism , Cell Count , Cell Lineage , Cell Proliferation , Culture Media, Conditioned , Humans , Lymphocyte Activation/immunology , Reactive Oxygen Species/metabolism , Solubility , T-Lymphocytes/enzymology , T-Lymphocytes/metabolism
20.
Clin Cancer Res ; 16(10): 2769-80, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20460472

ABSTRACT

PURPOSE: The aims of this study are to compare antitumor activities of two generations of GD3-specific chimeric antigen receptors (CAR) in human primary T lymphocytes in vitro and to evaluate the antitumor efficacy of using a combination of systemic infusion of interleukin-2 (IL2) and designer T cells to eradicate subcutaneous established GD3+ melanoma in nude mice. EXPERIMENTAL DESIGN: Antitumor activities were compared for two generations of designer T cells, the progenitor first-generation with immunoglobulin T-cell receptor (TCR) with Signal 1 and the second-generation designer T cells with Signal 1+2. Osmotic IL2 pumps were used to deliver the maximum tolerated dose of IL2 to enhance the antitumor effects of designer T cells on subcutaneous established melanoma in nude mice. RESULTS: Melanoma is associated with high expression of ganglioside GD3, which has been targeted with modest effect in antibody therapies. We previously showed that an anti-GD3 CAR (sFv-TCRzeta) will recruit T cells to target this non-T-dependent antigen, with potent killing of melanoma cells. Here, we report the addition of a CD28 costimulation domain to create a second-generation CAR, called Tandem for two signals. We show that this Tandem sFv-CD28/TCRzeta receptor on T cells confers advantages of improved cytokine secretion, cytotoxicity, proliferation, and clonal expansion on tumor contact versus the same CAR without costimulation. In an adoptive transfer model using established melanoma tumors, designer T cells with CD28 showed a 50% rate of complete remissions but only where IL2 was supplemented. CONCLUSIONS: As a reagent for clinical development, the second-generation product is shown to have superior properties to warrant its preference for clinical designer T-cell immunotherapy for melanoma and other tumors. Systemic IL2 was required for optimal activity in an established tumor model.


Subject(s)
CD28 Antigens/immunology , Gangliosides/immunology , Immunotherapy, Adoptive/methods , Melanoma, Experimental/therapy , Receptors, Antigen, T-Cell/immunology , Animals , Blotting, Western , Cell Line, Tumor , Cell Separation , Chimera , Cytokines/biosynthesis , Female , Flow Cytometry , Humans , Interleukin-2 , Melanoma, Experimental/immunology , Mice , Mice, Nude , Neuroectodermal Tumors/immunology , Neuroectodermal Tumors/therapy , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Transduction, Genetic , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...