Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Nutrients ; 12(6)2020 Jun 08.
Article in English | MEDLINE | ID: mdl-32521660

ABSTRACT

Flavonoids are a class of polyphenolic compounds that naturally occur in plants. Sub-groups of flavonoids include flavone, flavonol, flavanone, flavanonol, anthocyanidin, flavanol and isoflavone. The various modifications on flavonoid molecules further increase the diversity of flavonoids. Certain crops are famous for being enriched in specific flavonoids. For example, anthocyanins, which give rise to a purplish color, are the characteristic compounds in berries; flavanols are enriched in teas; and isoflavones are uniquely found in several legumes. It is widely accepted that the antioxidative properties of flavonoids are beneficial for human health. In this review, we summarize the classification of the different sub-groups of flavonoids based on their molecular structures. The health benefits of flavonoids are addressed from the perspective of their molecular structures. The flavonoid biosynthesis pathways are compared among different crops to highlight the mechanisms that lead to the differential accumulation of different sub-groups of flavonoids. In addition, the mechanisms and genes involved in the transport and accumulation of flavonoids in crops are discussed. We hope the understanding of flavonoid accumulation in crops will guide the proper balance in their consumption to improve human health.


Subject(s)
Crops, Agricultural/metabolism , Flavonoids/chemistry , Flavonoids/classification , ATP-Binding Cassette Transporters/metabolism , Anthocyanins , Antioxidants , Female , Flavonoids/biosynthesis , Flavonoids/metabolism , Humans , Isoflavones , Male , Molecular Structure , Polyphenols
2.
J Exp Bot ; 71(10): 2970-2981, 2020 05 30.
Article in English | MEDLINE | ID: mdl-32061092

ABSTRACT

Transcription factors (TFs) help plants respond to environmental stresses by regulating gene expression. Up till now, studies on the MYB family of TFs have mainly focused on the highly abundant R2R3-subtype. While the less well-known 1R-subtype has been generally shown to enhance abscisic acid (ABA) sensitivity by acting as transcriptional activators, the mechanisms of their functions are unclear. Here we identified an ABA sensitivity-associated gene from soybean, ABA-Sensitive 1 (GmABAS1), of the 1R-subtype of MYB. Using the GFP-GmABAS1 fusion protein, we demonstrated that GmABAS1 is localized in the nucleus, and with yeast reporter systems, we showed that it is a transcriptional repressor. We then identified the target gene of GmABAS1 to be Glyma.01G060300, an annotated ABI five-binding protein 3 and showed that GmABAS1 binds to the promoter of Glyma.01G060300 both in vitro and in vivo. Furthermore, Glyma.01G060300 and GmABAS1 exhibited reciprocal expression patterns under osmotic stress, inferring that GmABAS1 is a transcriptional repressor of Glyma.01G060300. As a further confirmation, AtAFP2, an orthologue of Glyma.01G060300, was down-regulated in GmABAS1-transgenic Arabidopsis thaliana, enhancing the plant's sensitivity to ABA. This is the first time a 1R-subtype of MYB from soybean has been reported to enhance ABA sensitivity by acting as a transcriptional repressor.


Subject(s)
Abscisic Acid , Glycine max , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Glycine max/genetics , Glycine max/metabolism , Stress, Physiological , Transcription Factors/genetics , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL