Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 82
Filter
1.
Sensors (Basel) ; 24(9)2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38732870

ABSTRACT

Moiré patterns caused by aliasing between the camera's sensor and the monitor can severely degrade image quality. Image demoiréing is a multi-task image restoration method that includes texture and color restoration. This paper proposes a new multibranch wavelet-based image demoiréing network (MBWDN) for moiré pattern removal. Moiré images are separated into sub-band images using wavelet decomposition, and demoiréing can be achieved using the different learning strategies of two networks: moiré removal network (MRN) and detail-enhanced moiré removal network (DMRN). MRN removes moiré patterns from low-frequency images while preserving the structure of smooth areas. DMRN simultaneously removes high-frequency moiré patterns and enhances fine details in images. Wavelet decomposition is used to replace traditional upsampling, and max pooling effectively increases the receptive field of the network without losing the spatial information. Through decomposing the moiré image into different levels using wavelet transform, the feature learning results of each branch can be fully preserved and fed into the next branch; therefore, possible distortions in the recovered image are avoided. Thanks to the separation of high- and low-frequency images during feature training, the proposed two networks achieve impressive moiré removal effects. Based on extensive experiments conducted using public datasets, the proposed method shows good demoiréing validity both quantitatively and qualitatively when compared with the state-of-the-art approaches.

2.
Sensors (Basel) ; 24(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38544126

ABSTRACT

Radar data can provide additional depth information for monocular depth estimation. It provides a cost-effective solution and is robust in various weather conditions, particularly when compared with lidar. Given the sparse and limited vertical field of view of radar signals, existing methods employ either a vertical extension of radar points or the training of a preprocessing neural network to extend sparse radar points under lidar supervision. In this work, we present a novel radar expansion technique inspired by the joint bilateral filter, tailored for radar-guided monocular depth estimation. Our approach is motivated by the synergy of spatial and range kernels within the joint bilateral filter. Unlike traditional methods that assign a weighted average of nearby pixels to the current pixel, we expand sparse radar points by calculating a confidence score based on the values of spatial and range kernels. Additionally, we propose the use of a range-aware window size for radar expansion instead of a fixed window size in the image plane. Our proposed method effectively increases the number of radar points from an average of 39 points in a raw radar frame to an average of 100 K points. Notably, the expanded radar exhibits fewer intrinsic errors when compared with raw radar and previous methodologies. To validate our approach, we assess our proposed depth estimation model on the nuScenes dataset. Comparative evaluations with existing radar-guided depth estimation models demonstrate its state-of-the-art performance.

3.
Environ Technol ; : 1-9, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38047446

ABSTRACT

In this study, the effect of baffle configuration on the water disinfection efficiency of a planar photoreactor equipped with ultraviolet C light-emitting diodes (UV-C LEDs) was investigated. The results indicated that the configuration of the baffles influenced the hydrodynamics inside the flow channel and thus affected the microbial trajectory, and exposure time. Accordingly, a modified serpentine configuration was developed to enhance the UV light exposure of microbes in water and improve the reactor performance for microbial inactivation. According to the simulation results, the quarter-circle baffles used in the modified serpentine configuration increased the microbial path length along the flow channel. However, because the cross-sectional area of the flow channel decreased, this configuration increased the water velocity. A modified serpentine configuration with a baffle radius of 5 mm achieved the longest microbial exposure time and highest inactivation value for Escherichia coli. At a water flow rate of 160 mL/min, this configuration achieved a UV fluence of 15.2 mJ/cm2 and an inactivation value of 3.8 log, which were approximately 22% and 0.4 log higher than those obtained with the traditional serpentine configuration, respectively. In addition, the maximum water flow rate at which the UV reactor achieved an inactivation value of 4.0 log was 154 mL/min at a baffle radius of 5 mm. This flow rate was 11.5% higher than that obtained with the traditional serpentine configuration. These close agreements between the experimental and simulation results confirmed the strong capability of the proposed modified serpentine configuration to improve reactor performance.

4.
Commun Chem ; 6(1): 153, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37463995

ABSTRACT

Natural products are important sources of therapeutic agents and useful drug discovery tools. The fused macrocycles and multiple stereocenters of briarane-type diterpenoids pose a major challenge to total synthesis and efforts to characterize their biological activities. Harnessing a scalable source of excavatolide B (excB) from cultured soft coral Briareum stechei, we generated analogs by late-stage diversification and performed structure-activity analysis, which was critical for the development of functional excB probes. We further used these probes in a chemoproteomic strategy to identify Stimulator of Interferon Genes (STING) as a direct target of excB in mammalian cells. We showed that the epoxylactone warhead of excB is required to covalently engage STING at its membrane-proximal Cys91, inhibiting STING palmitoylation and signaling. This study reveals a possible mechanism-of-action of excB, and expands the repertoire of covalent STING inhibitors.

5.
Int J Biol Sci ; 19(9): 2648-2662, 2023.
Article in English | MEDLINE | ID: mdl-37324949

ABSTRACT

Head and neck cancer is a major cancer type, with high motility rates that reduce the quality of life of patients. Herein, we investigated the effectiveness and mechanism of a combination therapy involving TLR9 activator (CpG-2722) and phosphatidylserine (PS)-targeting prodrug of SN38 (BPRDP056) in a syngeneic orthotopic head and neck cancer animal model. The results showed a cooperative antitumor effect of CpG-2722 and BPRDP056 owing to their distinct and complementary antitumor functions. CpG-2722 induced antitumor immune responses, including dendritic cell maturation, cytokine production, and immune cell accumulation in tumors, whereas BPRDP056 directly exerted cytotoxicity toward cancer cells. We also discovered a novel function and mechanism of TLR9 activation, which increased PS exposure on cancer cells, thereby attracting more BPRDP056 to the tumor site for cancer cell killing. Killed cells expose more PS in tumor for BPRDP056 targeting. Tumor antigens released from the dead cells were taken up by antigen-presenting cells, which enhanced the CpG-272-promoted T cell-mediated tumor-killing effect. These form a positive feed-forward antitumor effect between the actions of CpG-2722 and BPRDP056. Thus, the study findings suggest a novel strategy of utilizing the PS-inducing function of TLR9 agonists to develop combinational cancer treatments using PS-targeting drugs.


Subject(s)
Neoplasms , Prodrugs , Animals , Toll-Like Receptor 9 , Phosphatidylserines , Prodrugs/pharmacology , Prodrugs/therapeutic use , Quality of Life , Immunity
6.
Neuropsychopharmacology ; 48(12): 1789-1797, 2023 11.
Article in English | MEDLINE | ID: mdl-37264172

ABSTRACT

The circadian system influences many different biological processes, including memory performance. While the suprachiasmatic nucleus (SCN) functions as the brain's central pacemaker, downstream "satellite clocks" may also regulate local functions based on the time of day. Within the dorsal hippocampus (DH), for example, local molecular oscillations may contribute to time-of-day effects on memory. Here, we used the hippocampus-dependent Object Location Memory task to determine how memory is regulated across the day/night cycle in mice. First, we systematically determined which phase of memory (acquisition, consolidation, or retrieval) is modulated across the 24 h day. We found that mice show better long-term memory performance during the day than at night, an effect that was specifically attributed to diurnal changes in memory consolidation, as neither memory acquisition nor memory retrieval fluctuated across the day/night cycle. Using RNA-sequencing we identified the circadian clock gene Period1 (Per1) as a key mechanism capable of supporting this diurnal fluctuation in memory consolidation, as learning-induced Per1 oscillates in tandem with memory performance in the hippocampus. We then show that local knockdown of Per1 within the DH impairs spatial memory without affecting either the circadian rhythm or sleep behavior. Thus, Per1 may independently function within the DH to regulate memory in addition to its known role in regulating the circadian system within the SCN. Per1 may therefore exert local diurnal control over memory consolidation within the DH.


Subject(s)
Hippocampus , Memory Consolidation , Animals , Mice , Circadian Rhythm/physiology , Hippocampus/metabolism , Memory Consolidation/physiology , Period Circadian Proteins/genetics , Spatial Memory , Suprachiasmatic Nucleus/metabolism
7.
Sci Adv ; 9(18): eadf0108, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37134157

ABSTRACT

Immune checkpoint blockade has been largely unsuccessful for the treatment of bone metastatic castrate-resistant prostate cancer (mCRPC). Here, we report a combinatorial strategy to treat mCRPC using γδ-enriched chimeric antigen receptor (CAR) T cells and zoledronate (ZOL). In a preclinical murine model of bone mCRPC, γδ CAR-T cells targeting prostate stem cell antigen (PSCA) induced a rapid and significant regression of established tumors, combined with increased survival and reduced cancer-associated bone disease. Pretreatment with ZOL, a U.S. Food and Drug Administration-approved bisphosphonate prescribed to mitigate pathological fracture in mCRPC patients, resulted in CAR-independent activation of γδ CAR-T cells, increased cytokine secretion, and enhanced antitumor efficacy. These data show that the activity of the endogenous Vγ9Vδ2 T cell receptor is preserved in CAR-T cells, allowing for dual-receptor recognition of tumor cells. Collectively, our findings support the use of γδ CAR-T cell therapy for mCRPC treatment.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Receptors, Chimeric Antigen , United States , Male , Humans , Animals , Mice , Prostatic Neoplasms, Castration-Resistant/therapy , Zoledronic Acid/pharmacology , Receptors, Antigen, T-Cell , Cell- and Tissue-Based Therapy
8.
J Exp Med ; 220(6)2023 06 05.
Article in English | MEDLINE | ID: mdl-36995340

ABSTRACT

Phagocytosis is a key macrophage function, but how phagocytosis shapes tumor-associated macrophage (TAM) phenotypes and heterogeneity in solid tumors remains unclear. Here, we utilized both syngeneic and novel autochthonous lung tumor models in which neoplastic cells express the fluorophore tdTomato (tdTom) to identify TAMs that have phagocytosed neoplastic cells in vivo. Phagocytic tdTompos TAMs upregulated antigen presentation and anti-inflammatory proteins, but downregulated classic proinflammatory effectors compared to tdTomneg TAMs. Single-cell transcriptomic profiling identified TAM subset-specific and common gene expression changes associated with phagocytosis. We uncover a phagocytic signature that is predominated by oxidative phosphorylation (OXPHOS), ribosomal, and metabolic genes, and this signature correlates with worse clinical outcome in human lung cancer. Expression of OXPHOS proteins, mitochondrial content, and functional utilization of OXPHOS were increased in tdTompos TAMs. tdTompos tumor dendritic cells also display similar metabolic changes. Our identification of phagocytic TAMs as a distinct myeloid cell state links phagocytosis of neoplastic cells in vivo with OXPHOS and tumor-promoting phenotypes.


Subject(s)
Lung Neoplasms , Macrophages , Humans , Macrophages/metabolism , Phagocytosis/genetics , Lung Neoplasms/pathology , Myeloid Cells/metabolism , Oxidative Stress , Tumor Microenvironment
9.
Neurobiol Aging ; 126: 77-90, 2023 06.
Article in English | MEDLINE | ID: mdl-36958103

ABSTRACT

Aging impairs both circadian rhythms and memory, though the relationship between these impairments is not fully understood. Circadian rhythms are largely dictated by clock genes within the body's central pacemaker, the suprachiasmatic nucleus (SCN), though these genes are also expressed in local clocks throughout the body. As circadian rhythms can directly affect memory performance, one possibility is that memory deficits observed with age are downstream of global circadian rhythm disruptions stemming from the SCN. Here, we demonstrate that expression of clock gene Period1 within a memory-relevant cortical structure, the retrosplenial cortex (RSC), is necessary for incidental learning, and that age-related disruption of Period1 within the RSC-but not necessarily the SCN-contributes to cognitive decline. These data expand the known functions of clock genes beyond maintaining circadian rhythms and suggests that age-associated changes in clock gene expression modulates circadian rhythms and memory performance in a brain region-dependent manner.


Subject(s)
Circadian Clocks , Gyrus Cinguli , Mice , Animals , Male , Gyrus Cinguli/metabolism , Suprachiasmatic Nucleus/metabolism , Circadian Rhythm/genetics , Brain/metabolism , Transcription Factors/metabolism , Aging/genetics , Circadian Clocks/genetics , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism
10.
J Microbiol Immunol Infect ; 56(4): 680-687, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36822945

ABSTRACT

INTRODUCTION: Taiwan has several hepatitis C virus (HCV) hyper-endemic areas. We aimed to evaluate the effectiveness and safety of a collaborative HCV care system with an outreach decentralized strategy among the resource-constrained rural/remote areas of Taiwan. METHODS: The pilot study was conducted in four high HCV-endemic townships in the rural/remote areas of Taoyuan, Alishan, Zhuoxi and Xiulin. Registered residents who worked or lived in the four areas and were aged 30-75 years were invited to participate in this program. Multidisciplinary HCV care teams provided outreach decentralized services of anti-HCV screening, link-to-diagnosis, and link-to-treatment with direct-acting antiviral agents (DAA). The primary end-point was sustained virological response (SVR). RESULTS: Of 8291 registered residents who were invited as the target population, 7807 (94.2%) subjects received anti-HCV screening, with the average anti-HCV prevalence rate of 14.2% (1108/7807) (range among four areas: 11.8%-16.7%). The rate of link-to-diagnosis was 94.4% (1046/1108) of anti-HCV-positive subjects (range: 90.9%-100%) with an average HCV-viremic rate of 55.1% (576/1046) (range: 50.0%-64.3%). The link-to-treat rate was 94.4% (544/576) in HCV-viremic subjects (range from 92.7% to 97.2%). Overall, 523 (96.1%) patients achieved an SVR (range: 94.7%-97.6%). Eventually, the overall effectiveness was 80.7% (range: 74.6%-93.1%). The presence of hepatocellular carcinoma at baseline was the only factor associated with DAA failure. The DAA regimens were well-tolerated. CONCLUSION: The outreach decentralized community-based care system with DAA therapy was highly effective and safe in the achievement of HCV micro-elimination in the resource-constrained rural and remote regions, which could help us to tackle the disparity.


Subject(s)
Hepatitis C, Chronic , Hepatitis C , Liver Neoplasms , Humans , Antiviral Agents/therapeutic use , Hepacivirus/physiology , Taiwan/epidemiology , Pilot Projects , Hepatitis C, Chronic/drug therapy , Hepatitis C, Chronic/epidemiology , Hepatitis C, Chronic/complications , Hepatitis C/drug therapy , Hepatitis C/epidemiology , Liver Neoplasms/drug therapy
11.
Sleep Breath ; 27(2): 631-640, 2023 05.
Article in English | MEDLINE | ID: mdl-35752719

ABSTRACT

PURPOSE: Body composition is considered to be associated with obstructive sleep apnea (OSA) severity. This cross-sectional study aimed to examine associations of overnight body composition changes with positional OSA. METHODS: The body composition of patients diagnosed with non-positional and positional OSA was measured before and after overnight polysomnography. Odds ratios (ORs) of outcome variables between the case (positional OSA) and reference (non-positional OSA) groups were examined for associations with sleep-related parameters and with changes in body composition by a logistic regression analysis. RESULTS: Among 1584 patients with OSA, we used 1056 patients with non-positional OSA as the reference group. We found that a 1-unit increase in overnight changes of total fat percentage and total fat mass were associated with 1.076-fold increased OR (95% confidence interval (CI): 1.014, 1.142) and 1.096-fold increased OR (95% CI: 1.010, 1.189) of positional OSA, respectively (all p < 0.05). Additionally, a 1-unit increase in overnight changes of lower limb fat percentage and upper limb fat mass were associated with 1.043-fold increased OR (95% CI: 1.004, 1.084) and 2.638-fold increased OR (95% CI: 1.313, 5.302) of positional OSA, respectively (all p < 0.05). We observed that a 1-unit increase in overnight changes of trunk fat percentage and trunk fat mass were associated with 1.056-fold increased OR (95% CI: 1.008, 1.106) and 1.150-fold increased OR (95% CI: 1.016, 1.301) of positional OSA, respectively (all p < 0.05). CONCLUSION: Our findings indicated that nocturnal changes in the body's composition, especially total fat mass, total fat percentage, lower limb fat percentage, upper limb fat mass, trunk fat percentage, and trunk fat mass, may be associated with increased odds ratio of positional OSA compared with non-positional OSA.


Subject(s)
Sleep Apnea, Obstructive , Humans , Cross-Sectional Studies , Sleep , Body Composition , Polysomnography
12.
Nucleic Acids Res ; 50(20): 11965-11978, 2022 11 11.
Article in English | MEDLINE | ID: mdl-36400570

ABSTRACT

Twinkle is a mitochondrial replicative helicase which can self-load onto and unwind mitochondrial DNA. Nearly 60 mutations on Twinkle have been linked to human mitochondrial diseases. Using cryo-electron microscopy (cryo-EM) and high-speed atomic force microscopy (HS-AFM), we obtained the atomic-resolution structure of a vertebrate Twinkle homolog with DNA and captured in real-time how Twinkle is self-loaded onto DNA. Our data highlight the important role of the non-catalytic N-terminal domain of Twinkle. The N-terminal domain directly contacts the C-terminal helicase domain, and the contact interface is a hotspot for disease-related mutations. Mutations at the interface destabilize Twinkle hexamer and reduce helicase activity. With HS-AFM, we observed that a highly dynamic Twinkle domain, which is likely to be the N-terminal domain, can protrude ∼5 nm to transiently capture nearby DNA and initialize Twinkle loading onto DNA. Moreover, structural analysis and subunit doping experiments suggest that Twinkle hydrolyzes ATP stochastically, which is distinct from related helicases from bacteriophages.


Subject(s)
DNA Helicases , Mitochondrial Proteins , Humans , Mitochondrial Proteins/metabolism , Cryoelectron Microscopy , DNA Helicases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , DNA Replication , DNA, Mitochondrial/genetics
13.
Nat Commun ; 13(1): 5781, 2022 10 02.
Article in English | MEDLINE | ID: mdl-36184605

ABSTRACT

Alternative Lengthening of Telomeres (ALT) utilizes a recombination mechanism and break-induced DNA synthesis to maintain telomere length without telomerase, but it is unclear how cells initiate ALT. TERRA, telomeric repeat-containing RNA, forms RNA:DNA hybrids (R-loops) at ALT telomeres. We show that depleting TERRA using an RNA-targeting Cas9 system reduces ALT-associated PML bodies, telomere clustering, and telomere lengthening. TERRA interactome reveals that TERRA interacts with an extensive subset of DNA repair proteins in ALT cells. One of TERRA interacting proteins, the endonuclease XPF, is highly enriched at ALT telomeres and recruited by telomeric R-loops to induce DNA damage response (DDR) independent of CSB and SLX4, and thus triggers break-induced telomere synthesis and lengthening. The attraction of BRCA1 and RAD51 at telomeres requires XPF in FANCM-deficient cells that accumulate telomeric R-loops. Our results suggest that telomeric R-loops activate DDR via XPF to promote homologous recombination and telomere replication to drive ALT.


Subject(s)
Telomerase , DNA , Endonucleases/metabolism , RNA , Telomerase/genetics , Telomerase/metabolism , Telomere/genetics , Telomere/metabolism , Telomere Homeostasis
14.
J Med Chem ; 65(19): 12802-12824, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36153998

ABSTRACT

Ligand-targeting drug delivery systems have made significant strides for disease treatments with numerous clinical approvals in this era of precision medicine. Herein, we report a class of small molecule-based immune checkpoint-targeting maytansinoid conjugates. From the ligand targeting ability, pharmacokinetics profiling, in vivo anti-pancreatic cancer, triple-negative breast cancer, and sorafenib-resistant liver cancer efficacies with quantitative mRNA analysis of treated-tumor tissues, we demonstrated that conjugate 40a not only induced lasting regression of tumor growth, but it also rejuvenated the once immunosuppressive tumor microenvironment to an "inflamed hot tumor" with significant elevation of gene expressions that were not accessible in the vehicle-treated tumor. In turn, the immune checkpoint-targeting small molecule drug conjugate from this work represents a new pharmacodelivery strategy that can be expanded with combination therapy with existing immune-oncology treatment options.


Subject(s)
Phosphatidylserines , Triple Negative Breast Neoplasms , Humans , Ligands , RNA, Messenger , Sorafenib/pharmacology , Sorafenib/therapeutic use , Tumor Microenvironment
15.
Dermatol Ther ; 35(10): e15774, 2022 10.
Article in English | MEDLINE | ID: mdl-36054263

ABSTRACT

Capecitabine-induced hand-foot syndrome (HFS) is common in clinical practice. There are many regimens used to prevent HFS. However, the most effective preventive regimen has not yet been identified. Thus, we conducted a network meta-analysis to investigate the best preventive regimen for HFS. The PRISMA-NMA guidelines were used in this study. The PubMed, Cochrane, and Embase databases were searched. The main endpoint was set as HFS of National Cancer Institute grade 2 or more. We included only randomized control trials. The P-score was used to rank the regimens. Among all the regimens, topical silymarin had the best preventive ability compared with the placebo (OR: 0.08; 95% CI: 0.01-0.71). The other identified effective regimen included pyridoxine (400 mg) and celecoxib; compared with the placebo, the odds ratio was 0.27 (95% CI: 0.08-0.91) and 0.41 (95% CI: 0.18-0.95), respectively. Topical silymarin is the most useful regimen for preventing capecitabine-induced HFS.


Subject(s)
Hand-Foot Syndrome , Silymarin , Antimetabolites, Antineoplastic/adverse effects , Capecitabine/adverse effects , Celecoxib , Hand-Foot Syndrome/drug therapy , Hand-Foot Syndrome/etiology , Hand-Foot Syndrome/prevention & control , Humans , Network Meta-Analysis , Pyridoxine/therapeutic use , Randomized Controlled Trials as Topic
16.
Methods Enzymol ; 672: 103-123, 2022.
Article in English | MEDLINE | ID: mdl-35934471

ABSTRACT

Replicative helicase and polymerase form the leading-strand replisome that unwinds parental DNA and performs continuous leading-strand DNA synthesis. Uncoupling of the helicase-polymerase complex results in replication stress, replication errors, and genome instability. Although numerous replisomes from different biological systems have been reconstituted and characterized, structural investigations of the leading-strand replisome complex are hindered by its large size and dynamics. We have determined the first replisome structure on a fork substrate with bacteriophage T7 replisome as a model system. Here, we summarized our protocols to prepare and characterize the coupled T7 replisome complex. Similar methods can potentially be applied for structural investigations of more complicated replisomes.


Subject(s)
Bacteriophage T7 , DNA-Directed DNA Polymerase , Bacteriophage T4/genetics , Bacteriophage T7/genetics , DNA/chemistry , DNA Helicases/chemistry , DNA Replication , DNA-Directed DNA Polymerase/chemistry
17.
Polymers (Basel) ; 14(16)2022 Aug 22.
Article in English | MEDLINE | ID: mdl-36015687

ABSTRACT

Covalent organic frameworks (COFs) have attracted significant interest because of their heteroatom-containing architectures, high porous networks, large surface areas, and capacity to include redox-active units, which can provide good electrochemical efficiency in energy applications. In this research, we synthesized two novel hydroxy-functionalized COFs-TAPT-2,3-NA(OH)2, TAPT-2,6-NA(OH)2 COFs-through Schiff-base [3 + 2] polycondensations of 1,3,5-tris-(4-aminophenyl)triazine (TAPT-3NH2) with 2,3-dihydroxynaphthalene-1,4-dicarbaldehyde (2,3-NADC) and 2,6-dihydroxynaphthalene-1,5-dicarbaldehyde (2,6-NADC), respectively. The resultant hydroxy-functionalized COFs featured high BET-specific surface areas up to 1089 m2 g-1, excellent crystallinity, and superior thermal stability up to 60.44% char yield. When used as supercapacitor electrodes, the hydroxy-functionalized COFs exhibited electrochemical redox activity due to the presence of redox-active 2,3-dihydroxynaphthalene and 2,6-dihydroxynaphthalene in their COF skeletons. The hydroxy-functionalized COFs showed specific capacitance of 271 F g-1 at a current density of 0.5 A g-1 with excellent stability after 2000 cycles of 86.5% capacitance retention. Well-known pore features and high surface areas of such COFs, together with their superior supercapacitor performance, make them suitable electrode materials for use in practical applications.

18.
Pharmaceutics ; 14(7)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35890212

ABSTRACT

Ligand-targeting drug conjugates are a class of clinically validated biopharmaceutical drugs constructed by conjugating cytotoxic drugs with specific disease antigen targeting ligands through appropriate linkers. The integrated linker-drug motif embedded within such a system can prevent the premature release during systemic circulation, thereby allowing the targeting ligand to engage with the disease antigen and selective accumulation. We have designed and synthesized new thioester-linked maytansinoid conjugates. By performing in vitro cytotoxicity, targeting ligand binding assay, and in vivo pharmacokinetic studies, we investigated the utility of this new linker-drug moiety in the small molecule drug conjugate (SMDC) system. In particular, we conjugated the thioester-linked maytansinoids to the phosphatidylserine-targeting small molecule zinc dipicolylamine and showed that Zn8_DM1 induced tumor regression in the HCC1806 triple-negative breast cancer xenograft model. Moreover, in a spontaneous sorafenib-resistant liver cancer model, Zn8_DM1 exhibited potent antitumor growth efficacy. From quantitative mRNA analysis of Zn8_DM1 treated-tumor tissues, we observed the elevation of gene expressions associated with a "hot inflamed tumor" state. With the identification and validation of a plethora of cancer-associated antigens in the "omics" era, this work provided the insight that antibody- or small molecule-based targeting ligands can be conjugated similarly to generate new ligand-targeting drug conjugates.

19.
Biomed Pharmacother ; 151: 113084, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35567985

ABSTRACT

We report the design, synthesis and evaluation of a class of phosphatidylserine-targeting zinc (II) dipicolylamine drug conjugates and show that conjugate 16b elicits immune cell infiltration and remodels the "cold" hepatic tumor microenvironment to the inflamed "hot" tumor. Structure-property relationship study via linker modifications and subsequent pharmacokinetics profiling were carried out to improve the solubility and stability of the conjugates in vivo. In a spontaneous hepatocellular carcinoma mouse model, we showed that conjugate 16b exhibited better antitumor efficacy than sorafenib. In particular, significant increase of CD8+ T cell infiltration and granzyme B level was observed, providing insights in sensitizing tumors from intrinsic immune suppressive microenvironment. Evaluation of tumor inflammation-related mRNA expression profile revealed that conjugate 16b, through inductions of key gene expressions including STAT1, CXCL9, CCL5, and PD-L1, rejuvenated tumor microenvironment with enhancement in T cell-, macrophage-, NK cell-, chemokines and cytokines'- functions. Our study establishes that an apoptosis-targeting theranostic enables enrichment of multifaceted immune cells into the tumor mass, which provides potential therapeutic strategies in the combination with immune checkpoint blockade treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Immune Checkpoint Inhibitors , Liver Neoplasms/drug therapy , Mice , Phosphatidylserines , Tumor Microenvironment
20.
PLoS Comput Biol ; 18(5): e1009839, 2022 05.
Article in English | MEDLINE | ID: mdl-35559958

ABSTRACT

Myeloid-derived monocyte and macrophages are key cells in the bone that contribute to remodeling and injury repair. However, their temporal polarization status and control of bone-resorbing osteoclasts and bone-forming osteoblasts responses is largely unknown. In this study, we focused on two aspects of monocyte/macrophage dynamics and polarization states over time: 1) the injury-triggered pro- and anti-inflammatory monocytes/macrophages temporal profiles, 2) the contributions of pro- versus anti-inflammatory monocytes/macrophages in coordinating healing response. Bone healing is a complex multicellular dynamic process. While traditional in vitro and in vivo experimentation may capture the behavior of select populations with high resolution, they cannot simultaneously track the behavior of multiple populations. To address this, we have used an integrated coupled ordinary differential equations (ODEs)-based framework describing multiple cellular species to in vivo bone injury data in order to identify and test various hypotheses regarding bone cell populations dynamics. Our approach allowed us to infer several biological insights including, but not limited to,: 1) anti-inflammatory macrophages are key for early osteoclast inhibition and pro-inflammatory macrophage suppression, 2) pro-inflammatory macrophages are involved in osteoclast bone resorptive activity, whereas osteoblasts promote osteoclast differentiation, 3) Pro-inflammatory monocytes/macrophages rise during two expansion waves, which can be explained by the anti-inflammatory macrophages-mediated inhibition phase between the two waves. In addition, we further tested the robustness of the mathematical model by comparing simulation results to an independent experimental dataset. Taken together, this novel comprehensive mathematical framework allowed us to identify biological mechanisms that best recapitulate bone injury data and that explain the coupled cellular population dynamics involved in the process. Furthermore, our hypothesis testing methodology could be used in other contexts to decipher mechanisms in complex multicellular processes.


Subject(s)
Macrophages , Osteoclasts , Anti-Inflammatory Agents , Cell Differentiation , Monocytes , Osteoblasts , Osteoclasts/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...