Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(6): e0259123, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37971222

ABSTRACT

IMPORTANCE: We report the application of a colorimetric and fluorescent reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to facilitate mass screening for sarbecoviruses in bats. The assay was evaluated using a total of 838 oral and alimentary samples from bats and demonstrated comparable sensitivity and specificity to quantitative reverse transcription PCR (qRT-PCR), with a simple setup. The addition of SYTO9, a fluorescent nucleic acid stain, also allows for quantitative analysis. The scalability and simplicity of the assay are believed to contribute to improving preparedness for detecting emerging coronaviruses by applying it to field studies and surveillance.


Subject(s)
Chiroptera , Severe acute respiratory syndrome-related coronavirus , Animals , Chiroptera/virology , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Reverse Transcription
2.
Circ J ; 84(11): 2027-2031, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32981925

ABSTRACT

BACKGROUND: SARS-CoV-2 infection is associated with myocardial injury, but there is a paucity of experimental platforms for the condition.Methods and Results:Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) infected by SARS-CoV-2 for 3 days ceased beating and exhibited cytopathogenic changes with reduced viability. Active viral replication was evidenced by an increase in supernatant SARS-CoV-2 and the presence of SARS-CoV-2 nucleocaspid protein within hiPSC-CMs. Expressions of BNP, CXCL1, CXCL2, IL-6, IL-8 and TNF-α were upregulated, while ACE2 was downregulated. CONCLUSIONS: Our hiPSC-CM-based in-vitro SARS-CoV-2 myocarditis model recapitulated the cytopathogenic effects and cytokine/chemokine response. It could be exploited as a drug screening platform.


Subject(s)
Betacoronavirus/metabolism , Coronavirus Infections/complications , Induced Pluripotent Stem Cells/virology , Myocarditis/complications , Myocytes, Cardiac/virology , Pneumonia, Viral/complications , Angiotensin-Converting Enzyme 2 , Betacoronavirus/genetics , COVID-19 , Cell Survival , Cells, Cultured , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Coronavirus Nucleocapsid Proteins , Cytokines/metabolism , Cytopathogenic Effect, Viral , Drug Evaluation, Preclinical/methods , Humans , Induced Pluripotent Stem Cells/metabolism , Myocarditis/metabolism , Myocarditis/virology , Myocytes, Cardiac/metabolism , Nucleocapsid Proteins/metabolism , Pandemics , Peptidyl-Dipeptidase A/metabolism , Phosphoproteins , Pneumonia, Viral/metabolism , Pneumonia, Viral/virology , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2 , Virus Replication
3.
Int J Mol Sci ; 21(15)2020 Jul 29.
Article in English | MEDLINE | ID: mdl-32751106

ABSTRACT

To control the COVID-19 pandemic and prevent its resurgence in areas preparing for a return of economic activities, a method for a rapid, simple, and inexpensive point-of-care diagnosis and mass screening is urgently needed. We developed and evaluated a one-step colorimetric reverse-transcriptional loop-mediated isothermal amplification assay (COVID-19-LAMP) for detection of SARS-CoV-2, using SARS-CoV-2 isolate and respiratory samples from patients with COVID-19 (n = 223) and other respiratory virus infections (n = 143). The assay involves simple equipment and techniques and low cost, without the need for expensive qPCR machines, and the result, indicated by color change, is easily interpreted by naked eyes. COVID-19-LAMP can detect SARS-CoV-2 RNA with detection limit of 42 copies/reaction. Of 223 respiratory samples positive for SARS-CoV-2 by qRT-PCR, 212 and 219 were positive by COVID-19-LAMP at 60 and 90 min (sensitivities of 95.07% and 98.21%) respectively, with the highest sensitivities among nasopharyngeal swabs (96.88% and 98.96%), compared to sputum/deep throat saliva samples (94.03% and 97.02%), and throat swab samples (93.33% and 98.33%). None of the 143 samples with other respiratory viruses were positive by COVID-19-LAMP, showing 100% specificity. Samples with higher viral load showed shorter detection time, some as early as 30 min. This inexpensive, highly sensitive and specific COVID-19-LAMP assay can be useful for rapid deployment as mobile diagnostic units to resource-limiting areas for point-of-care diagnosis, and for unlimited high-throughput mass screening at borders to reduce cross-regional transmission.


Subject(s)
Betacoronavirus/genetics , Colorimetry/methods , Coronavirus Infections/diagnosis , Mass Screening/economics , Pneumonia, Viral/diagnosis , RNA, Viral/analysis , Betacoronavirus/isolation & purification , COVID-19 , Colorimetry/economics , Coronavirus Infections/virology , Humans , Limit of Detection , Nasopharynx/virology , Nucleic Acid Amplification Techniques/methods , Pandemics , Pneumonia, Viral/virology , Point-of-Care Systems , RNA, Viral/metabolism , SARS-CoV-2 , Viral Load
4.
Sci Rep ; 6: 26045, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27185741

ABSTRACT

Unlike Elizabethkingia meningoseptica, the clinical importance of E. anophelis is poorly understood. We determined the clinical and molecular epidemiology of bacteremia caused by Elizabethkingia-like species from five regional hospitals in Hong Kong. Among 45 episodes of Elizabethkingia-like bacteremia, 21 were caused by Elizabethkingia, including 17 E. anophelis, three E. meningoseptica and one E. miricola; while 24 were caused by other diverse genera/species, as determined by 16S rRNA gene sequencing. Of the 17 cases of E. anophelis bacteremia, 15 (88%) were clinically significant. The most common diagnosis was pneumonia (n = 5), followed by catheter-related bacteremia (n = 4), neonatal meningitis (n = 3), nosocomial bacteremia (n = 2) and neutropenic fever (n = 1). E. anophelis bacteremia was commonly associated with complications and carried 23.5% mortality. In contrast, of the 24 episodes of bacteremia due to non-Elizabethkingia species, 16 (67%) were clinically insignificant. Compared to non-Elizabethkingia bacteremia, Elizabethkingia bacteremia was associated with more clinically significant infections (P < 0.01) and positive cultures from other sites (P < 0.01), less polymicrobial bacteremia (P < 0.01), and higher complication (P < 0.05) and mortality (P < 0.05) rates. Elizabethkingia bacteremia is predominantly caused by E. anophelis instead of E. meningoseptica. Elizabethkingia bacteremia, especially due to E. anophelis, carries significant morbidity and mortality, and should be considered clinically significant unless proven otherwise.


Subject(s)
Bacteremia/epidemiology , Bacteremia/pathology , Chryseobacterium/isolation & purification , Flavobacteriaceae Infections/epidemiology , Flavobacteriaceae Infections/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Bacteremia/microbiology , Bacteremia/mortality , Child , Child, Preschool , Chryseobacterium/classification , Chryseobacterium/genetics , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Female , Flavobacteriaceae Infections/microbiology , Flavobacteriaceae Infections/mortality , Hong Kong/epidemiology , Hospitals , Humans , Infant , Male , Middle Aged , Molecular Epidemiology , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Survival Analysis , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...