Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Thromb Haemost ; 8(11): 2554-62, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20735720

ABSTRACT

BACKGROUND: Cold-storage of platelets followed by rewarming induces changes in Glycoprotein (GP) Ibα-distribution indicative of receptor clustering and initiates thromboxane A(2) -formation. GPIbα is associated with 14-3-3 proteins, which contribute to GPIbα-signaling and in nucleated cells take part in apoptosis regulation. OBJECTIVES AND METHODS: We investigated whether GPIbα-clustering induces platelet apoptosis through 14-3-3 proteins during cold (4 h 0 °C)-rewarming (1 h 37 °C). RESULTS: During cold-rewarming, 14-3-3 proteins associate with GPIbα and dissociate from Bad inducing Bad-dephosphorylation and activation. This initiates pro-apoptosis changes in Bax/Bcl-x(L) and Bax-translocation to the mitochondria, inducing cytochrome c release. The result is activation of caspase-9, which triggers phosphatidylserine exposure and platelet phagocytosis by macrophages. Responses are prevented by N-acetyl-D-glucosamine (GN), which blocks GPIbα-clustering, and by O-sialoglycoprotein endopeptidase, which removes extracellular GPIbα. CONCLUSIONS: Cold-rewarming triggers apoptosis through a GN-sensitive GPIbα-change indicative of receptor clustering. Attempts to improve platelet transfusion by cold-storage should focus on prevention of the GPIbα-change.


Subject(s)
14-3-3 Proteins/metabolism , Apoptosis , Blood Platelets/cytology , Platelet Glycoprotein GPIb-IX Complex/metabolism , Acetylglucosamine/metabolism , Binding Sites , Caspase 9/metabolism , Cluster Analysis , Cold Temperature , Flow Cytometry/methods , Humans , Mitochondria/metabolism , Phosphorylation , Thromboxane A2/metabolism , bcl-Associated Death Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...