Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 14(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36015651

ABSTRACT

This study uses metakaolin, sodium hydroxide, sodium metasilicate, and water content as the reaction variables in the application of the design of experiment (DOE) method. At the same time, the various component factors and their interactions were analyzed to understand how these factors affect the mechanical properties of a metakaolin-based geopolymer incorporated with SiC sludge (SCSGPs). The results of the statistical analysis showed that the compressive strength of SCSGPs was affected by the Na/Si molar ratio (NSR) (p-level = 0.000 <0.05), the Na/Al molar ratio (NAR) (p-level= 0.000 <0.05), and the interaction between the dissolution rate of Si (DRA). Within the design scope of this study, the maximum compressive strength of SCSGPs and the coefficients of the NSR, the NAR, and the DRA of SCSGPs was evaluated. The multiple regression analysis and the tested coefficient of r2 were also studied. The multiple regression analysis models provide an effective reference for the application of SCSGPs.

2.
Polymers (Basel) ; 13(22)2021 Nov 21.
Article in English | MEDLINE | ID: mdl-34833328

ABSTRACT

This study used silicon carbide sludge (SCS) to prepare lightweight foaming geopolymer materials (FGPs) by the direct foaming method. Results showed that when the SCS replacement level was 10%, the bulk density of the lightweight FGPs with added foaming agent amounts of 0.5% and 2.0% was 0.59 and 0.49 g/cm3, respectively; at a curing time of 28 days, the lightweight FGPs with amounts of added foaming agent of 0.5% and 2.0% had bulk densities that were 0.65 and 0.58 g/cm3, respectively. When the SCS replacement level was 10%, and the amount of added foaming agent was 2.0%, the porosity ratio of the lightweight FGP increased from 31.88% to 40.03%. The mechanical strength of the lightweight FGPs with SCS replacement levels of 10% and 20% was 0.88 and 0.31 MPa, respectively. Additionally, when the amount of foaming agent increased to 2.0%, the thermal conductivity of the lightweight FGPs with SCS replacement levels of 10% and 20% were 0.370 and 0.456 W/m⋅K, respectively. When the curing time was 1 day, and the amount of added foaming agent was 0.5%, the reverse-side temperature of the lightweight FGPs with SCS replacement levels of 10% and 20% were 286 and 311 °C, respectively. The k value of the O2 reaction decreased from 2.94 × 10-4 to 1.76 × 10-4 because the reaction system was affected by the presence of SiC sludge, which was caused the reaction to consume O2 to form CO2. The results have been proposed to explain that the manufactured lightweight FGPs had a low thermal conductivity (0.370-0.456 W/m⋅K). Therefore, recycling of silicon carbide sludge in lightweight foaming geopolymer materials has potential as fire resistance material for the construction industry.

3.
Materials (Basel) ; 13(9)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403405

ABSTRACT

There are considerable resource reuse and environmental concerns regarding SiC sludge (SiCS) that results from cutting silicon ingots into wafers. In the current study, the effect of the Na2SiO3 solution/sodium hydroxide solution (NS/SS) mass ratio and SiCS amount on metakaolin geopolymers was found during geopolymerization system performance. The results indicate that while NS/SS ratio was relatively low, increasing the NaOH content resulted in a sufficient amount of OH- in the system to increase the solubility and hinder polycondensation, as indicated by the bulk density and setting-time results; since the polycondensation was inhibited, the mechanical strength was reduced. This study demonstrated that a geopolymer can be formed from a substitution of 10% SiCS and with an NS/SS ratio of 1.6, and that this geopolymer is a feasible material.

SELECTION OF CITATIONS
SEARCH DETAIL
...