Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 22(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35632041

ABSTRACT

Due to the ever-increasing industrial activity, humans and the environment suffer from deteriorating air quality, making the long-term monitoring of air particle indicators essential. The advances in unmanned aerial vehicles (UAVs) offer the potential to utilize UAVs for various forms of monitoring, of which air quality data acquisition is one. Nevertheless, most current UAV-based air monitoring suffers from a low payload, short endurance, and limited range, as they are primarily dependent on rotary aerial vehicles. In contrast, a fixed-wing UAV may be a better alternative. Additionally, one of the most critical modules for 3D profiling of a UAV system is path planning, as it directly impacts the final results of the spatial coverage and temporal efficiency. Therefore, this work focused on developing 3D coverage path planning based upon current commercial ground control software, where the method mainly depends on the Boustrophedon and Dubins paths. Furthermore, a user interface was also designed for easy accessibility, which provides a generalized tool module that links up the proposed algorithm, the ground control software, and the flight controller. Simulations were conducted to assess the proposed methods. The result showed that the proposed methods outperformed the existing coverage paths generated by ground control software, as it showed a better coverage rate with a sampling density of 50 m.


Subject(s)
Air Pollution , Remote Sensing Technology , Algorithms , Humans , Remote Sensing Technology/methods
2.
Sensors (Basel) ; 22(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35009946

ABSTRACT

This work aimed to develop an autonomous system for unmanned aerial vehicles (UAVs) to land on moving platforms such as an automobile or a marine vessel, providing a promising solution for a long-endurance flight operation, a large mission coverage range, and a convenient recharging ground station. Unlike most state-of-the-art UAV landing frameworks that rely on UAV onboard computers and sensors, the proposed system fully depends on the computation unit situated on the ground vehicle/marine vessel to serve as a landing guidance system. Such a novel configuration can therefore lighten the burden of the UAV, and the computation power of the ground vehicle/marine vessel can be enhanced. In particular, we exploit a sensor fusion-based algorithm for the guidance system to perform UAV localization, whilst a control method based upon trajectory optimization is integrated. Indoor and outdoor experiments are conducted, and the results show that precise autonomous landing on a 43 cm × 43 cm platform can be performed.

3.
Sensors (Basel) ; 21(23)2021 Nov 27.
Article in English | MEDLINE | ID: mdl-34883913

ABSTRACT

The ever-burgeoning growth of autonomous unmanned aerial vehicles (UAVs) has demonstrated a promising platform for utilization in real-world applications. In particular, a UAV equipped with a vision system could be leveraged for surveillance applications. This paper proposes a learning-based UAV system for achieving autonomous surveillance, in which the UAV can be of assistance in autonomously detecting, tracking, and following a target object without human intervention. Specifically, we adopted the YOLOv4-Tiny algorithm for semantic object detection and then consolidated it with a 3D object pose estimation method and Kalman filter to enhance the perception performance. In addition, UAV path planning for a surveillance maneuver is integrated to complete the fully autonomous system. The perception module is assessed on a quadrotor UAV, while the whole system is validated through flight experiments. The experiment results verified the robustness, effectiveness, and reliability of the autonomous object tracking UAV system in performing surveillance tasks. The source code is released to the research community for future reference.


Subject(s)
Algorithms , Unmanned Aerial Devices , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...