Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Gut Pathog ; 16(1): 3, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38238807

ABSTRACT

BACKGROUND: Worldwide, noroviruses are the leading cause of acute gastroenteritis (AGE) in people of all age groups. In India, norovirus rates between 1.4 to 44.4% have been reported. Only a very few complete norovirus genome sequences from India have been reported. OBJECTIVE: To perform full genome sequencing of noroviruses circulating in India during 2017-2021, identify circulating genotypes, assess evolution including detection of recombination events. METHODOLOGY: Forty-five archived norovirus-positive samples collected between October 2017 to July 2021 from patients with AGE from two hospitals in Kolkata, India were processed for full genome sequencing. Phylogenetic analysis, recombination breakpoint analysis and comprehensive mutation analysis were also performed. RESULTS: Full genome analysis of norovirus sequences revealed that strains belonging to genogroup (G)I were genotyped as GI.3[P13]. Among the different norovirus capsid-polymerase combinations, GII.3[P16], GII.4 Sydney[P16], GII.4 Sydney[P31], GII.13[P16], GII.16[P16] and GII.17 were identified. Phylogenetic analysis confirmed phylogenetic relatedness with previously reported norovirus strains and all viruses were analyzed by Simplot. GII[P16] viruses with multiple residue mutations within the non-structural region were detected among circulating GII.4 and GII.3 strains. Comprehensive mutation analysis and selection pressure analysis of GII[P16] viruses showed positive as well as negative selection sites. A GII.17 strain (NICED-BCH-11889) had an untypeable polymerase type, closely related to GII[P38]. CONCLUSION: This study highlights the circulation of diverse norovirus strains in eastern India. These findings are important for understanding norovirus epidemiology in India and may have implications for future vaccine development.

2.
Virology ; 588: 109912, 2023 11.
Article in English | MEDLINE | ID: mdl-37913611

ABSTRACT

Human adenovirus (HAdV) causes acute respiratory infections leading to mortality in children. This study analyzes the circulating respiratory HAdV genotypes in West Bengal, India during 2018-2022 among symptomatic patients. The overall positivity rate was 6.8%, out of which 26.4% were co-infected with other respiratory viruses. Children aged 2 to 5 years were mostly infected. Phylogenetic analysis revealed that the recombinant HAdV-B type 7/3, which has remarkable outbreak potential, predominantly circulated in this region followed by the non-recombinant HAdV-B type 3/3. Moreover, the amino acid sequences encoded by both the hexon and fiber genes of these two circulating strains possessed a few mutations that mostly diverged from the prototype strain, although the divergence was less pronounced in case of the amino acids encoded by the fiber gene of HAdV-B type 3/3. Overall, the results underscore the need for continuous surveillance of respiratory HAdV types to combat future possible epidemics.


Subject(s)
Adenoviridae Infections , Adenovirus Infections, Human , Adenoviruses, Human , Respiratory Tract Infections , Child , Humans , Adenoviruses, Human/genetics , Molecular Epidemiology , Phylogeny , Adenovirus Infections, Human/epidemiology , Respiratory Tract Infections/epidemiology , Adenoviridae/genetics , India/epidemiology , Delivery of Health Care , Sequence Analysis, DNA
3.
J Appl Microbiol ; 133(2): 758-783, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35462449

ABSTRACT

AIMS: This study was carried out from January 2018 to March 2020 in Kolkata, eastern India to determine the prevalence rates and epidemiological patterns associated with the major viral agents of gastroenteritis among children ≤5 years of age. Molecular characterization of GARV, the predominant agent of viral gastroenteritis, was done to understand their genotype diversity. METHODS AND RESULTS: 1284 of 3157 stool samples (~40%) from children (≤5 years) with acute gastroenteritis tested positive for one or more enteric viruses with positivity rates 25.11%, 8.74%, 6.62% and 6.11% for GARV, HAdV-F, AstV and NoV respectively. Co-infection was observed in 5.31% of cases. Associated clinical/meteorological variables like age, sex, symptoms, temperature and precipitation were assessed to find any correlation between these and enteric virus infection rates. >70% of viral gastroenteritis cases were observed in 6-24 months' age group. GARV and AstV infection occurred mostly during cooler months while HAdV-F infection mostly occurred during warmer periods. No definite seasonality was observed for NoV infections. Clinical severity associated with GARV infection was higher compared to other enteric viruses. Genotyping of rotavirus positive samples revealed G3P[8] was the predominantly circulating GARV genotype throughout the study period. CONCLUSIONS: GARV remained the predominant viral agent of acute gastroenteritis among children though its prevalence rates in this region declined significantly compared to the previous years (2010-2016). The prevalence of other enteric viruses was below 10%. SIGNIFICANCE AND IMPACT OF STUDY: This study provides valuable insights regarding the current burden of viral gastroenteritis in Eastern India. The 2-year study in children will provide the baseline data for future surveillance studies in evaluating the impact of the introduced GARV vaccine on the overall prevalence of viral gastroenteritis.


Subject(s)
Adenoviruses, Human , Gastroenteritis , Rotavirus , Adenoviruses, Human/genetics , Antigens, Viral , Child , Feces , Gastroenteritis/epidemiology , Genotype , Humans , India/epidemiology , Infant , Rotavirus/genetics
4.
Viruses ; 13(7)2021 07 08.
Article in English | MEDLINE | ID: mdl-34372530

ABSTRACT

Viral infections lead to expeditious activation of the host's innate immune responses, most importantly the interferon (IFN) response, which manifests a network of interferon-stimulated genes (ISGs) that constrain escalating virus replication by fashioning an ill-disposed environment. Interestingly, most viruses, including rotavirus, have evolved numerous strategies to evade or subvert host immune responses to establish successful infection. Several studies have documented the induction of ISGs during rotavirus infection. In this study, we evaluated the induction and antiviral potential of viperin, an ISG, during rotavirus infection. We observed that rotavirus infection, in a stain independent manner, resulted in progressive upregulation of viperin at increasing time points post-infection. Knockdown of viperin had no significant consequence on the production of total infectious virus particles. Interestingly, substantial escalation in progeny virus release was observed upon viperin knockdown, suggesting the antagonistic role of viperin in rotavirus release. Subsequent studies unveiled that RV-NSP4 triggered relocalization of viperin from the ER, the normal residence of viperin, to mitochondria during infection. Furthermore, mitochondrial translocation of NSP4 was found to be impeded by viperin, leading to abridged cytosolic release of Cyt c and subsequent inhibition of intrinsic apoptosis. Additionally, co-immunoprecipitation studies revealed that viperin associated with NSP4 through regions including both its radical SAM domain and its C-terminal domain. Collectively, the present study demonstrated the role of viperin in restricting rotavirus egress from infected host cells by modulating NSP4 mediated apoptosis, highlighting a novel mechanism behind viperin's antiviral action in addition to the intricacy of viperin-virus interaction.


Subject(s)
Apoptosis , Oxidoreductases Acting on CH-CH Group Donors/genetics , Rotavirus Infections/genetics , Rotavirus/physiology , Toxins, Biological/antagonists & inhibitors , Toxins, Biological/genetics , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/genetics , Animals , Cell Line , Chlorocebus aethiops , HEK293 Cells , HT29 Cells , Humans , Immunity, Innate , Oxidoreductases Acting on CH-CH Group Donors/immunology , Rotavirus/chemistry , Rotavirus Infections/immunology , Toxins, Biological/immunology , Vero Cells , Viral Nonstructural Proteins/immunology , Virus Replication
5.
Arch Virol ; 166(11): 2989-2998, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34383167

ABSTRACT

Noroviruses are significant etiological agents of acute gastroenteritis (AGE) across all age groups, especially in children under 5 years of age. Although the prevalence of norovirus infection is known to have increased in various countries, in India there are few reports pertaining to the norovirus disease burden. We investigated the epidemiology and molecular characteristics of noroviruses in children seeking health care at two hospitals in Kolkata, Eastern India. Faecal specimens were collected between January 2018 and December 2019 from 2812 children under 5 years of age with acute gastroenteritis. Noroviruses were detected in 6.04% (170/2812) of the samples, and 12.9% (22/170) of these were cases of coinfection with rotavirus. Among children (≤5 years), a higher infection rate (8.2%, n = 94/1152) was observed in the 6 to 12 month age group. GII.4 Sydney 2012 was the dominant norovirus capsid genotype (n = 75/90, 83.3%), followed by GII.3 (n = 10/90, 11.1%). Other capsid types GII.13 (n = 4/90, 4.4%) and GII.17 (n = 1/90; 1.1%) were also detected at low frequency. Phylogenetic analysis showed that the GII.P16 polymerase of strains in this region clustered with those of the phylogenetically distinct monophyletic clade of GII.P16 strains, whose members have been circulating worldwide since 2014. Inter-genotypic norovirus recombinants such as GII.P16-GII.3 (n = 10) and GII.P16-GII.13 (n = 4) were also observed among the circulating strains. In comparison to previous studies from eastern India, the present study shows a higher detection rate of norovirus infection in the paediatric population suffering from acute gastroenteritis. Continuous surveillance is required for predicting the emergence of novel genotypes and recombinant strains and for future vaccine development.


Subject(s)
Caliciviridae Infections/virology , Gastroenteritis/virology , Norovirus/genetics , Caliciviridae Infections/epidemiology , Capsid , Child , Child, Preschool , Epitopes/genetics , Female , Gastroenteritis/epidemiology , Genetic Variation , Genotype , Humans , India/epidemiology , Infant , Male , Phylogeny , Prevalence , Viral Proteins/genetics
6.
J Med Virol ; 93(11): 6180-6190, 2021 11.
Article in English | MEDLINE | ID: mdl-34138479

ABSTRACT

Human adenovirus-F (HAdV-F) (genotype 40/41) is the second-most leading cause of pediatric gastroenteritis after rotavirus, worldwide, accounting for 2.8%-11.8% of infantile diarrheal cases. Earlier studies across eastern India revealed a shift in the predominance of genotypes from HAdV41 in 2007-09 to HAdV40 in 2013-14. Thus, the surveillance for HAdV-F genotypes in this geographical setting was undertaken over 2017-2020 to analyze the viral evolutionary dynamics. A total of 3882 stool samples collected from children (≤5 years) were screened for HAdV-F positivity by conventional PCR. The hypervariable regions of the hexon and the partial shaft region of long fiber genes were amplified, sequenced, and phylogenetically analyzed with respect to the prototype strains. A marginal decrease in enteric HAdV prevalence was observed (9.04%, n = 351/3882) compared to the previous report (11.8%) in this endemic setting. Children <2 years were found most vulnerable to enteric HAdV infection. Reduction in adenovirus-rotavirus co-infection was evident compared to the sole adenovirus infection. HAdV-F genotypes 40 and 41 were found to co-circulate, but HAdV41 was predominant. HAdV40 strains were genetically conserved, whereas HAdV41 strains accumulated new mutations. On the basis of a different set of mutations in their genome, HAdV41 strains segregated into 2 genome type clusters (GTCs). Circulating HAdV41 strains clustered with GTC1 of the fiber gene, for the first time during this study period. This study will provide much-needed baseline data on the emergence and circulation of HAdV40/41 strains for future vaccine development.


Subject(s)
Adenovirus Infections, Human/virology , Adenoviruses, Human/classification , Adenoviruses, Human/genetics , Gastroenteritis/virology , Phylogeny , Adenovirus Infections, Human/epidemiology , Adenoviruses, Human/isolation & purification , Child, Preschool , Diarrhea/virology , Feces/virology , Female , Gastroenteritis/epidemiology , Genotype , Humans , India/epidemiology , Infant , Infant, Newborn , Male , Rotavirus/genetics , Rotavirus Vaccines , Sequence Analysis, DNA , Vaccine Development
7.
J Med Virol ; 92(8): 1334-1342, 2020 08.
Article in English | MEDLINE | ID: mdl-32073164

ABSTRACT

Despite the significant reduction in the global infantile death toll due to rotaviral diarrhea, India still contributes substantially to rotavirus-related hospitalization as well as mortality rates. The rotavirus surveillance study conducted from 2008 through 2017 among children (≤5 years) with moderate to severe gastroenteritis seeking healthcare facilities at two hospitals in eastern India, revealed a change in the proportion of rotavirus positivity, seasonality, and age-group specificity along with the cycling of different usual and unusual genotypes in this endemic setting. G1 strains predominated during 2008-2010, while G2 and G9 genotypes eventually upsurged during 2011-2013. G1 strains re-established their lead during 2013-2015, while G3 emerged for the first time in eastern India in 2015 and rooted itself as the cardinal strain 2016 onwards. Evolutionary analyses of all the predominant genotypes (G1, G2, G3, and G9) revealed that they were mostly phylogenetically distant to the rotavirus vaccine strains as depicted in the phylogenetic dendrogram. These decade-long epidemiological studies during the pre-vaccination period in West Bengal (eastern India) underscore the cocirculation of multiple rotavirus genotypes in addition to sporadic occurrence of zoonotic strains like G10P[6] and G11P[25].


Subject(s)
Epidemiological Monitoring , Gastroenteritis/epidemiology , Phylogeny , Rotavirus Infections/epidemiology , Rotavirus/genetics , Child, Preschool , Gastroenteritis/prevention & control , Gastroenteritis/virology , Genotype , Humans , India/epidemiology , Infant , Rotavirus/classification , Rotavirus Infections/prevention & control , Rotavirus Vaccines/analysis , Time Factors , Vaccination
8.
JMIR Bioinform Biotech ; 1(1): e20735, 2020.
Article in English | MEDLINE | ID: mdl-33496683

ABSTRACT

BACKGROUND: The RNA genome of the emerging novel coronavirus is rapidly mutating, and its human-to-human transmission rate is increasing. Hence, temporal dissection of their evolutionary dynamics, the nature of variations among different strains, and understanding the single nucleotide polymorphisms in the endemic settings are crucial. Delineating the heterogeneous genomic constellations of this novel virus will help us understand its complex behavior in a particular geographical region. OBJECTIVE: This is a comprehensive analysis of 95 Indian SARS-CoV-2 genome sequences available from the Global Initiative on Sharing All Influenza Data (GISAID) repository during the first 6 months of 2020 (January through June). Evolutionary dynamics, gene-specific phylogeny, and the emergence of the novel coevolving mutations in 9 structural and nonstructural genes among circulating SARS-CoV-2 strains across 12 different Indian states were analyzed. METHODS: A total of 95 SARS-CoV-2 nucleotide sequences submitted from India were downloaded from the GISAID database. Molecular Evolutionary Genetics Analysis, version X software was used to construct the 9 phylogenetic dendrograms based on nucleotide sequences of the SARS-CoV-2 genes. Analyses of the coevolving mutations were done in comparison to the prototype SARS-CoV-2 from Wuhan, China. The secondary structure of the RNA-dependent RNA polymerase/nonstructural protein NSP12 was predicted with respect to the novel A97V mutation. RESULTS: Phylogenetic analyses revealed the evolution of "genome-type clusters" and adaptive selection of "L"-type SARS-CoV-2 strains with genetic closeness to the bat severe acute respiratory syndrome-like coronaviruses. These strains were distant to pangolin or Middle East respiratory syndrome-related coronavirus strains. With regard to the novel coevolving mutations, 2 groups have been seen circulating in India at present, the "major group" (66/95, 69.4%) and the "minor group" (21/95, 22.1%) , harboring 4 and 5 coexisting mutations, respectively. The "major group" mutations fall in the A2a clade. All the minor group mutations, except 11083G>T (L37F, NSP6 gene), were unique to the Indian isolates. CONCLUSIONS: This study highlights the rapidly evolving SARS-CoV-2 virus and the cocirculation of multiple clades and subclades. This comprehensive study is a potential resource for monitoring the novel mutations in the viral genome, interpreting changes in viral pathogenesis, and designing vaccines or other therapeutics.

9.
Cell Microbiol ; 22(3): e13149, 2020 03.
Article in English | MEDLINE | ID: mdl-31845505

ABSTRACT

Surveillance for maintaining genomic pristineness, a protective safeguard of great onco-preventive significance, has been dedicated in eukaryotic cells to a highly conserved and synchronised signalling cascade called DNA damage response (DDR). Not surprisingly, foreign genetic elements like those of viruses are often potential targets of DDR. Viruses have evolved novel ways to subvert this genome vigilance by twisting canonical DDR to a skewed, noncanonical response through selective hijacking of some DDR components while antagonising the others. Though reported for many DNA and a few RNA viruses, potential implications of DDR have not been addressed yet in case of infection with rotavirus (RV), a double-stranded RNA virus. In the present study, we aimed at the modulation of ataxia telangiectasia mutated (ATM)-checkpoint kinase 2 (Chk2) branch of DDR in response to RV infection in vitro. We found activation of the transducer kinase ATM and its downstream effector Chk2 in RV-SA11-infected cells, the activation response being maximal at 6-hr post infection. Moreover, ATM activation was found to be dependent on induction of the upstream sensor Mre11-Rad50-Nbs1 (MRN) complex. Interestingly, RV-SA11-mediated maximal induction of ATM-Chk2 pathway was revealed to be neither preceded by occurrence of nuclear DNA damage nor transduced to formation of damage-induced canonical nuclear foci. Subsequent investigations affirmed sequestration of MRN components as well as ATM-Chk2 proteins away from nucleus into cytosolic RV replication factories (viroplasms). Chemical intervention targeting ATM and Chk2 significantly inhibited fusion and maturation of viroplasms leading to attenuated viral propagation. Cumulatively, the current study describes RV-mediated activation of a noncanonical ATM-Chk2 branch of DDR skewed in favour of facilitated viroplasm fusion and productive viral perpetuation.


Subject(s)
Ataxia Telangiectasia Mutated Proteins/metabolism , Checkpoint Kinase 2/metabolism , DNA Damage , Rotavirus Infections/metabolism , Rotavirus/physiology , Viral Replication Compartments/metabolism , Acid Anhydride Hydrolases/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Checkpoint Kinase 2/genetics , DNA-Binding Proteins/metabolism , HT29 Cells , Host Microbial Interactions , Humans , MRE11 Homologue Protein/metabolism , Nuclear Proteins/metabolism , Rotavirus Infections/genetics , Rotavirus Infections/virology , Signal Transduction
10.
Infect Genet Evol ; 63: 158-174, 2018 09.
Article in English | MEDLINE | ID: mdl-29842980

ABSTRACT

Advent of new strains and shift in predominantly circulating genotypes are characteristics of group- A rotavirus (RVA), one of the major causes of childhood gastroenteritis. During diarrheal disease surveillance at Kolkata, India (2014-2016), a shift in circulating RVA strains from G1P[8] to G3P[8] was seen. Stool samples from children (n = 3048) with acute gastroenteritis were tested of which 38.7% were RVA positive. G1 was the predominant strain (65.3%) in 2014-2015 whereas in late 2015 and 2016, G3 became the preponderant strain (44.6%). In the past decade G3 strains were not observed in this region, we conducted whole genome sequencing of representative strains to gain insight into the phenomenon of emergence and genetic constellation of these circulating human G3 strains. The analyses revealed intergenogroup reassortment in G3P[4] strains (among Wa and DS-1-like genogroup) whereas G3P[8] strains were authentic Wa-like. Phylogenetic analysis revealed Kolkata G3 strains as polymorphic and thus they formed two sub-clusters due to antigenic differences in their VP7 protein. One of the sub-clusters had the wild-type threonine at 87 amino acid position while another sub-cluster had an isoleucine mutation. Presence of additional N-linked glycosylation site at amino acid 283 of VP7 glycoprotein suggests that the major neutralizing epitope on the VP7 (G3) of RotaTeq vaccine differs from the currently circulating G3 strains. The study is important as efficiency of rotavirus vaccine depends on the circulating heterogeneous genotype constellations. Continuous monitoring of circulating RVA strains in endemic settings like India is therefore important in pre- and post-vaccination period to monitor the emergence of new reassortant genotypes in addition to assessing vaccine efficacy.


Subject(s)
Antigens, Viral/genetics , Diarrhea/epidemiology , Gastroenteritis/epidemiology , Genome, Viral , Phylogeny , Rotavirus Infections/epidemiology , Rotavirus/genetics , Acute Disease , Antigens, Viral/chemistry , Antigens, Viral/immunology , Capsid Proteins/chemistry , Capsid Proteins/genetics , Capsid Proteins/immunology , Child, Preschool , Diarrhea/immunology , Diarrhea/prevention & control , Diarrhea/virology , Epidemiological Monitoring , Feces/virology , Female , Gastroenteritis/immunology , Gastroenteritis/prevention & control , Gastroenteritis/virology , Genotype , Humans , India/epidemiology , Infant , Infant, Newborn , Male , Mass Vaccination/statistics & numerical data , RNA, Viral/genetics , RNA, Viral/immunology , Rotavirus/classification , Rotavirus/immunology , Rotavirus/isolation & purification , Rotavirus Infections/immunology , Rotavirus Infections/prevention & control , Rotavirus Infections/virology , Rotavirus Vaccines/administration & dosage , Rotavirus Vaccines/genetics , Rotavirus Vaccines/immunology , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...