Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Ethnopharmacol ; 283: 114717, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34627986

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Jiao-Tai-Wan (JTW) is a very famous traditional Chinese medicine formula for the treatment of psychiatric disorders, especially in anxiety, insomnia and depression. However, its molecular mechanism of treatment remains indistinct. AIM OF THE STUDY: We aimed to reveal the action mechanism of JTW on anti-depression via inhibiting microglia activation and pro-inflammatory response both in vivo and in vitro. MATERIAL AND METHODS: The corticosterone (CORT)-induced depression mouse model was used to evaluate the therapeutic efficacy of JTW. Behavioral tests (open field, elevated plus maze, tail suspension and forced swim test) were conducted to evaluate the effect of JTW on depressive-like behaviors. The levels of inflammatory factors and the concentration of neurotransmitters were detected by RT-qPCR or ELISA assays. Then three hippocampal tissue samples per group (Control, CORT, and JTW group) were sent for RNA sequencing (RNA-seq). Transcriptomics data analysis was used to screen the key potential therapeutic targets and signaling pathways of JTW. Based on 8 bioactive species of JTW by our previous study using High-performance liquid chromatography (HPLC) analysis, molecular docking analyses were used to predict the interaction of JTW-derived compounds and depression targets. Finally, the results of transcriptome and molecular docking analyses were combined to verify the targets, key pathways, and efficacy of JTW treatment in vivo and vitro. RESULTS: JTW ameliorated CORT-induced depressive-like behaviors, neuronal damage and enhanced the levels of monoamine neurotransmitters in the serum of mice. JTW also inhibited CORT-induced inflammatory activation of microglia and decreased the serum levels of interleukin- 6(IL-6) and interleukin- 1ß (IL-1ß) in vivo. Transcriptomic data analysis showed there were 10 key driver analysis (KDA) genes with the strongest correlation which JTW regulated in depression mice. Molecular docking analysis displayed bioactive compound Magnoflorine had the strongest binding force to the key gene colony-stimulating factor 1 receptor (CSF1R), which is the signaling microglia dependent upon for their survival. Meanwhile, CSF1R staining showed it was consistent with inflammatory activation of microglia. Our vitro experiment also showed JTW and CSF1R inhibitor significantly reduced lipopolysaccharide (LPS)/interferon-gamma (IFNÉ£)-induced inflammatory activation response in macrophage cells. CONCLUSIONS: Our study suggests that JTW might ameliorate CORT-induced neuronal damage in depression mice by inhibiting CSF1R mediated microglia activation and pro-inflammatory response.


Subject(s)
Antidepressive Agents/pharmacology , Depression/drug therapy , Drugs, Chinese Herbal/pharmacology , Inflammation/drug therapy , Animals , Animals, Outbred Strains , Behavior, Animal/drug effects , Corticosterone/toxicity , Disease Models, Animal , Hippocampus/drug effects , Male , Mice , Microglia/drug effects , Microglia/metabolism , Molecular Docking Simulation , RAW 264.7 Cells
2.
Front Psychiatry ; 12: 703516, 2021.
Article in English | MEDLINE | ID: mdl-34413798

ABSTRACT

Depression is a prevalent mental disease characterized by persistent low mood, lack of pleasure, and exhaustion. Acupoint catgut embedding (ACE) is a kind of modern acupuncture treatment, which has been widely used for the treatment of a variety of neuropsychiatric diseases. To investigate the effects and underlying mechanism of ACE on depression, in this study, we applied ACE treatment at the Baihui (GV20) and Dazhui (GV14) acupoints of corticosterone (CORT)-induced depression model mice. The results showed that ACE treatment significantly attenuated the behavioral deficits of depression model mice in the open field test (OFT), elevated-plus-maze test (EPMT), tail suspension test (TST), and forced swimming test (FST). Moreover, ACE treatment reduced the serum level of adreno-cortico-tropic-hormone (ACTH), enhanced the serum levels of 5-hydroxytryptamine (5-HT), and noradrenaline (NE). Furthermore, metabolomics analysis revealed that 23 differential metabolites in the brain of depression model mice were regulated by ACE treatment for its protective effect. These findings suggested that ACE treatment ameliorated depression-related manifestations in mice with depression through the attenuation of metabolic dysfunction in brain.

3.
Front Pharmacol ; 12: 629379, 2021.
Article in English | MEDLINE | ID: mdl-33815110

ABSTRACT

Intracerebral hemorrhage (ICH) is a subtype of stroke characterized by high mortality and disability rates. To date, the exact etiology of ICH-induced brain injury is still unclear. Moreover, there is no effective treatment to delay or prevent disease progression currently. Increasing evidence suggests that ferroptosis plays a dominant role in the pathogenesis of ICH injury. Baicalin is a main active ingredient of Chinese herbal medicine Scutellaria baicalensis. It has been reported to exhibit neuroprotective effects against ICH-induced brain injury as well as reduce iron deposition in multiple tissues. Therefore, in this study, we focused on the protective mechanisms of baicalin against ferroptosis caused by ICH using a hemin-induced in vitro model and a Type IV collagenase-induced in vivo model. Our results revealed that baicalin enhanced cell viability and suppressed ferroptosis in rat pheochromocytoma PC12 cells treated with hemin, erastin and RSL3. Importantly, baicalin showed anti-ferroptosis effect on primary cortical neurons (PCN). Furthermore, baicalin alleviated motor deficits and brain injury in ICH model mice through inhibiting ferroptosis. Additionally, baicalin existed no obvious toxicity towards the liver and kidney of mice. Evidently, ferroptosis is a key pathological feature of ICH and baicalin can prevent the development of ferroptosis in ICH. As such, baicalin is a potential therapeutic drug for ICH treatment.

4.
Nanoscale ; 13(6): 3827-3840, 2021 Feb 14.
Article in English | MEDLINE | ID: mdl-33565555

ABSTRACT

Intracerebral hemorrhage (ICH) is a neurological disorder resulting from the nontraumatic rupture of blood vessels in the brain. Ferroptosis is a newly identified form of programmed cell death, which is an important pathological feature of ICH injury. At present, the therapeutic efficacy of ICH treatment is far from satisfactory, so it is urgent to develop a safer and more effective method to treat ICH injury. Resveratrol (Res), a widely used nonflavonoid polyphenol compound, plays a neuroprotective role in many diseases. However, its poor oral bioavailability limits its clinical application in ICH. Polymer nanoparticles (NPs) are a commonly used drug delivery matrix material with good biocompatibility. To improve its bioavailability and accumulation in the brain, we used NPs to encapsulate Res. These spherical Res nanoparticles (Res-NPs) had a particle size of 297.57 ± 7.07 nm, a PDI of 0.23 ± 0.02 and a zeta potential of -5.45 ± 0.27 mV. They could be taken up by Madin-Darby canine kidney (MDCK) cells through a variety of nonspecific endocytosis mechanisms, mainly mediated by clathrin and plasma membrane microcapsules. After entering the cell, Res-NPs tend to accumulate in the endoplasmic reticulum and lysosomes. In a zebrafish model, we observed that Res-NPs could transport across physiological barriers. In a Sprague-Dawley (SD) rat model, we found that Res-NPs had more desirable improvements in Res accumulation within the plasma and brain. Moreover, we demonstrated that Res-NPs were able to inhibit ferroptosis induced by erastin in HT22 mouse hippocampal cells, which are commonly used in in vitro studies to examine neuronal differentiation and neurotoxicity implicated in brain injuries or neurological diseases. Finally, in an ICH mouse model, we confirmed that Res-NPs are a safer and effective treatment for ICH injury. Collectively, Res-NPs are effective to improve Res brain delivery and its therapeutic efficacy in ICH treatment.


Subject(s)
Nanoparticles , Zebrafish , Animals , Brain , Cerebral Hemorrhage/drug therapy , Dogs , Mice , Rats , Rats, Sprague-Dawley , Resveratrol
SELECTION OF CITATIONS
SEARCH DETAIL