Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 736261, 2021.
Article in English | MEDLINE | ID: mdl-35069523

ABSTRACT

Experimental autoimmune uveitis (EAU), a model of human uveitis, is an organ-specific, T cell-mediated autoimmune disease. Autoreactive T cells can penetrate the blood-retinal barrier, which is a physical defense composed of tight junction-linked retinal pigment epithelial (RPE) cells. RPE cells serve as antigen-presenting cells (APCs) in the eye since they express MHC class I and II and Toll-like receptors (TLRs). Although previous studies have shown that supplementation with TLR agonists exacerbates uveitis, little is known about how TLR signaling in the RPE contributes to the development of uveitis. In this study, we isolated the RPE from EAU mice, which were induced by active immunization (aEAU) or adoptive transfer of antigen-specific T cells (tEAU). The expression of TLRs on RPE was determined, and both aEAU and tEAU mice exhibited induced tlr7 expression. The TLR7 agonist R848 was shown to induce aggressive disease progression, along with significantly elevated levels of the uveopathogenic cytokine IL-17. Furthermore, not only IL-17 but also R848 appeared to enhance the inflammatory response and to impair the barrier function of the RPE, indicating that TLR7 signaling is involved in the pathogenesis of EAU by affecting the behaviors of the RPE and consequently allowing the infiltration of autoreactive T cells intraocularly. Finally, local application of shRNA against TLR7 delivered by recombinant AAV effectively inhibited disease severity and reduced IFN-γ and IL-17. Our findings highlight an immunomodulatory role of RPE TLR7 in EAU development and provide a potential therapeutic strategy for autoimmune uveitis.


Subject(s)
Autoimmune Diseases/immunology , Gene Expression Regulation/immunology , Membrane Glycoproteins/immunology , Retinal Pigment Epithelium/immunology , Signal Transduction/immunology , Toll-Like Receptor 7/immunology , Uveitis/immunology , Animals , Autoimmune Diseases/genetics , Disease Models, Animal , Imidazoles/pharmacology , Membrane Glycoproteins/agonists , Membrane Glycoproteins/genetics , Mice , Signal Transduction/genetics , Toll-Like Receptor 7/agonists , Toll-Like Receptor 7/genetics , Uveitis/genetics
2.
Front Immunol ; 8: 1508, 2017.
Article in English | MEDLINE | ID: mdl-29184551

ABSTRACT

Interleukin-4 (IL-4) has been considered as one of the tolerogenic cytokines in many autoimmune animal models and clinical settings. Despite its role in antagonizing pathogenic Th1 responses, little is known about whether IL-4 possesses functions that affect regulatory T cells (Tregs). Tregs are specialized cells responsible for the maintenance of peripheral tolerance through their immune modulatory capabilities. Interestingly, it has been suggested that IL-4 supplement at a high concentration protects responder T cells (Tresps) from Treg-mediated immune suppression. In addition, such supplement also impedes TGF-ß-induced Treg differentiation in vitro. However, these phenomena may contradict the tolerogenic role of IL-4, and the effects of IL-4 on Tregs are therefore needed to be further elucidated. In this study, we utilized IL-4 knockout (KO) mice to validate the role of IL-4 on Treg-mediated immune suppression. Although IL-4 KO and control animals harbor similar frequencies of Tregs, Tregs from IL-4 KO mice weakly suppressed autologous Tresp activation. In addition, IL-4 deprivation impaired the ability of Tregs to modulate immune response, whereas IL-4 supplementation reinforced IL-4 KO Tregs in their function in suppressing Tresps. Finally, the presence of IL-4 was associated with increased cell survival and granzyme expression of Tregs. These results suggest the essential role of IL-4 in supporting Treg-mediated immune suppression, which may benefit the development of therapeutic strategies for autoimmune diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...