Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(11): 10768-10776, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30777421

ABSTRACT

Five emitters CzAZB, tBuCzAZB, tmCzAZB, dmAcAZB, and PxzAZB based on dibenzo-1,4-azaborine as the electron acceptors and two identical amine groups as the donors were designed and synthesized. The dihedral angles between the planes of dibenzo-1,4-azaborine acceptors and amine-based donors greatly affect the thermally activated delayed fluorescence (TADF) property of these materials. A simple concept "steric switching" is introduced to predict whether the emitter possesses TADF property. CzAZB and tBuCzAZB, with very high photoluminescence quantum yields (PLQYs) but small dihedral angles, do not show TADF. In contrast, tmCzAZB reveals a PLQY of only 56% but with a large dihedral angle due to the presence of two methyl groups at C1 and C8 of the carbazole groups, the steric switching operates, and the compound shows TADF property with a deep-blue color having CIE coordinates of (0.14, 0.15). In a similar manner, in dmAcAZB and PxzAZB with high PLQYs and large dihedral angles between the donor and acceptor planes, the "TADF steric switch" readily operates to achieve device external quantum efficiencies as high as 20.8 ± 1.2 and 27.5 ± 1.9% with blue and green emissions, respectively.

3.
Nat Commun ; 5: 3640, 2014 May 02.
Article in English | MEDLINE | ID: mdl-24784991

ABSTRACT

Increasing the conversion efficiency of thermoelectric materials is a key scientific driver behind a worldwide effort to enable heat to electricity power generation at competitive cost. Here we report an increased performance for antimony-doped lead selenide with a thermoelectric figure of merit of ~1.5 at 800 K. This is in sharp contrast to bismuth doped lead selenide, which reaches a figure of merit of <1. Substituting antimony or bismuth for lead achieves maximum power factors between ~23-27 µW cm(-1) K(-2) at temperatures above 400 K. The addition of small amounts (~0.25 mol%) of antimony generates extensive nanoscale precipitates, whereas comparable amounts of bismuth results in very few or no precipitates. The antimony-rich precipitates are endotaxial in lead selenide, and appear remarkably effective in reducing the lattice thermal conductivity. The corresponding bismuth-containing samples exhibit smaller reduction in lattice thermal conductivity.

4.
J Am Chem Soc ; 136(19): 7006-17, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24785377

ABSTRACT

SnTe is a potentially attractive thermoelectric because it is the lead-free rock-salt analogue of PbTe. However, SnTe is a poor thermoelectric material because of its high hole concentration arising from inherent Sn vacancies in the lattice and its very high electrical and thermal conductivity. In this study, we demonstrate that SnTe-based materials can be controlled to become excellent thermoelectrics for power generation via the successful application of several key concepts that obviate the well-known disadvantages of SnTe. First, we show that Sn self-compensation can effectively reduce the Sn vacancies and decrease the hole carrier density. For example, a 3 mol % self-compensation of Sn results in a 50% improvement in the figure of merit ZT. In addition, we reveal that Cd, nominally isoelectronic with Sn, favorably impacts the electronic band structure by (a) diminishing the energy separation between the light-hole and heavy-hole valence bands in the material, leading to an enhanced Seebeck coefficient, and (b) enlarging the energy band gap. Thus, alloying with Cd atoms enables a form of valence band engineering that improves the high-temperature thermoelectric performance, where p-type samples of SnCd(0.03)Te exhibit ZT values of ~0.96 at 823 K, a 60% improvement over the Cd-free sample. Finally, we introduce endotaxial CdS or ZnS nanoscale precipitates that reduce the lattice thermal conductivity of SnCd(0.03)Te with no effect on the power factor. We report that SnCd(0.03)Te that are endotaxially nanostructured with CdS and ZnS have a maximum ZTs of ~1.3 and ~1.1 at 873 K, respectively. Therefore, SnTe-based materials could be ideal alternatives for p-type lead chalcogenides for high temperature thermoelectric power generation.

5.
Nature ; 508(7496): 373-7, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24740068

ABSTRACT

The thermoelectric effect enables direct and reversible conversion between thermal and electrical energy, and provides a viable route for power generation from waste heat. The efficiency of thermoelectric materials is dictated by the dimensionless figure of merit, ZT (where Z is the figure of merit and T is absolute temperature), which governs the Carnot efficiency for heat conversion. Enhancements above the generally high threshold value of 2.5 have important implications for commercial deployment, especially for compounds free of Pb and Te. Here we report an unprecedented ZT of 2.6 ± 0.3 at 923 K, realized in SnSe single crystals measured along the b axis of the room-temperature orthorhombic unit cell. This material also shows a high ZT of 2.3 ± 0.3 along the c axis but a significantly reduced ZT of 0.8 ± 0.2 along the a axis. We attribute the remarkably high ZT along the b axis to the intrinsically ultralow lattice thermal conductivity in SnSe. The layered structure of SnSe derives from a distorted rock-salt structure, and features anomalously high Grüneisen parameters, which reflect the anharmonic and anisotropic bonding. We attribute the exceptionally low lattice thermal conductivity (0.23 ± 0.03 W m(-1) K(-1) at 973 K) in SnSe to the anharmonicity. These findings highlight alternative strategies to nanostructuring for achieving high thermoelectric performance.

6.
J Am Chem Soc ; 136(8): 3225-37, 2014 Feb 26.
Article in English | MEDLINE | ID: mdl-24533466

ABSTRACT

Lead chalcogenide thermoelectric systems have been shown to reach record high figure of merit values via modification of the band structure to increase the power factor or via nanostructuring to reduce the thermal conductivity. Recently, (PbTe)1-x(PbSe)x was reported to reach high power factors via a delayed onset of interband crossing. Conversely, the (PbTe)1-x(PbS)x was reported to achieve low thermal conductivities arising from extensive nanostructuring. Here we report the thermoelectric properties of the pseudoternary 2% Na-doped (PbTe)1-2x(PbSe)x(PbS)x system. The (PbTe)1-2x(PbSe)x(PbS)x system is an excellent platform to study phase competition between entropically driven atomic mixing (solid solution behavior) and enthalpy-driven phase separation. We observe that the thermoelectric properties of the PbTe-PbSe-PbS 2% Na doped are superior to those of 2% Na-doped PbTe-PbSe and PbTe-PbS, respectively, achieving a ZT ≈2.0 at 800 K. The material exhibits an increased the power factor by virtue of valence band modification combined with a very reduced lattice thermal conductivity deriving from alloy scattering and point defects. The presence of sulfide ions in the rock-salt structure alters the band structure and creates a plateau in the electrical conductivity and thermopower from 600 to 800 K giving a power factor of 27 µW/cmK(2). The very low total thermal conductivity values of 1.1 W/m·K of the x = 0.07 composition is accounted for essentially by phonon scattering from solid solution defects rather than the assistance of endotaxial nanostructures.

7.
J Am Chem Soc ; 135(19): 7364-70, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23647245

ABSTRACT

Previous efforts to enhance thermoelectric performance have primarily focused on reduction in lattice thermal conductivity caused by broad-based phonon scattering across multiple length scales. Herein, we demonstrate a design strategy which provides for simultaneous improvement of electrical and thermal properties of p-type PbSe and leads to ZT ~ 1.6 at 923 K, the highest ever reported for a tellurium-free chalcogenide. Our strategy goes beyond the recent ideas of reducing thermal conductivity by adding two key new theory-guided concepts in engineering, both electronic structure and band alignment across nanostructure-matrix interface. Utilizing density functional theory for calculations of valence band energy levels of nanoscale precipitates of CdS, CdSe, ZnS, and ZnSe, we infer favorable valence band alignments between PbSe and compositionally alloyed nanostructures of CdS1-xSex/ZnS1-xSex. Then by alloying Cd on the cation sublattice of PbSe, we tailor the electronic structure of its two valence bands (light hole L and heavy hole Σ) to move closer in energy, thereby enabling the enhancement of the Seebeck coefficients and the power factor.

8.
J Am Chem Soc ; 135(13): 5152-60, 2013 Apr 03.
Article in English | MEDLINE | ID: mdl-23521562

ABSTRACT

We present a systematic study of the characterization and thermoelectric properties of nanostructured Na-doped PbSe embedded with 1-4% MSe (M = Ca, Sr, Ba) phases as endotaxial inclusions. The samples were powder-processed by the spark plasma sintering technique, which introduces mesoscale-structured grains. The hierarchical architectures on the atomic scale (Na and M solid solution), nanoscale (MSe nanoprecipitates), and mesoscale (grains) were confirmed by transmission electron microscopy. These structures produce a great reduction in the lattice thermal conductivity relative to pristine PbSe without appreciably affecting the power factor. The lattice thermal conductivity can be reduced by up to ∼29% when the second phase is added. The highest ZT value achieved was ∼1.3 at 923 K for both 2% SrSe-and 3% BaSe-containing samples, while the sample containing 4% CaSe showed a ZT value of ∼1.2 at 923 K. The optimal samples have hole carrier concentration of 1-2 × 10(20) cm(-3). We attribute the high ZT values to the combination of broad-based phonon scattering on multiple length scales and favorable charge transport through coherent interfaces between the PbSe matrix and MSe.

9.
J Am Chem Soc ; 133(50): 20476-87, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22126301

ABSTRACT

Lead sulfide, a compound consisting of elements with high natural abundance, can be converted into an excellent thermoelectric material. We report extensive doping studies, which show that the power factor maximum for pure n-type PbS can be raised substantially to ~12 µW cm(-1) K(-2) at >723 K using 1.0 mol % PbCl(2) as the electron donor dopant. We also report that the lattice thermal conductivity of PbS can be greatly reduced by adding selected metal sulfide phases. The thermal conductivity at 723 K can be reduced by ~50%, 52%, 30%, and 42% through introduction of up to 5.0 mol % Bi(2)S(3), Sb(2)S(3), SrS, and CaS, respectively. These phases form as nanoscale precipitates in the PbS matrix, as confirmed by transmission electron microscopy (TEM), and the experimental results show that they cause huge phonon scattering. As a consequence of this nanostructuring, ZT values as high as 0.8 and 0.78 at 723 K can be obtained for nominal bulk PbS material. When processed with spark plasma sintering, PbS samples with 1.0 mol % Bi(2)S(3) dispersion phase and doped with 1.0 mol % PbCl(2) show even lower levels of lattice thermal conductivity and further enhanced ZT values of 1.1 at 923 K. The promising thermoelectric properties promote PbS as a robust alternative to PbTe and other thermoelectric materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...