Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5137, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879542

ABSTRACT

Unravelling the multifaceted and bidirectional interactions between microbiota and host physiology represents a major scientific challenge. Here, we utilise the nematode model, Pristionchus pacificus, coupled to a laboratory-simulated decay process of its insect host, to mimic natural microbiota succession and investigate associated tripartite interactions. Metagenomics reveal that during initial decay stages, the population of vitamin B-producing bacteria diminishes, potentially due to a preferential selection by nematodes. As decay progresses to nutrient-depleted stages, bacteria with smaller genomes producing less nutrients become more prevalent. Lipid utilisation and dauer formation, representing key nematode survival strategies, are influenced by microbiota changes. Additionally, horizontally acquired cellulases extend the nematodes' reproductive phase due to more efficient foraging. Lastly, the expressions of Pristionchus species-specific genes are more responsive to natural microbiota compared to conserved genes, suggesting their importance in the organisms' adaptation to its ecological niche. In summary, we show the importance of microbial successions and their reciprocal interaction with nematodes for insect decay in semi-artificial ecosystems.


Subject(s)
Coleoptera , Ecosystem , Microbiota , Nematoda , Animals , Coleoptera/microbiology , Coleoptera/physiology , Microbiota/physiology , Nematoda/microbiology , Nematoda/physiology , Metagenomics , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Cellulases/metabolism , Cellulases/genetics
2.
Mol Biol Evol ; 39(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36469861

ABSTRACT

Transforming growth factor-ß (TGF-ß) signaling is essential for numerous biologic functions. It is a highly conserved pathway found in all metazoans including the nematode Caenorhabditis elegans, which has also been pivotal in identifying many components. Utilizing a comparative evolutionary approach, we explored TGF-ß signaling in nine nematode species and revealed striking variability in TGF-ß gene frequency across the lineage. Of the species analyzed, gene duplications in the DAF-7 pathway appear common with the greatest disparity observed in Pristionchus pacificus. Specifically, multiple paralogues of daf-3, daf-4 and daf-7 were detected. To investigate this additional diversity, we induced mutations in 22 TGF-ß components and generated corresponding double, triple, and quadruple mutants revealing both conservation and diversification in function. Although the DBL-1 pathway regulating body morphology appears highly conserved, the DAF-7 pathway exhibits functional divergence, notably in some aspects of dauer formation. Furthermore, the formation of the phenotypically plastic mouth in P. pacificus is partially influenced through TGF-ß with the strongest effect in Ppa-tag-68. This appears important for numerous processes in P. pacificus but has no known function in C. elegans. Finally, we observe behavioral differences in TGF-ß mutants including in chemosensation and the establishment of the P. pacificus kin-recognition signal. Thus, TGF-ß signaling in nematodes represents a stochastic genetic network capable of generating novel functions through the duplication and deletion of associated genes.


Subject(s)
Caenorhabditis elegans Proteins , Rhabditida , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Gene Regulatory Networks , Rhabditida/genetics , Rhabditida/metabolism
3.
Curr Biol ; 32(9): 2037-2050.e4, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35397201

ABSTRACT

Animals are associated with a diverse bacterial community that impacts host physiology. It is well known that nutrients and enzymes synthesized by bacteria largely expand host metabolic capacity. Bacteria also impact a wide range of animal physiology that solely depends on host genetics through direct interaction. However, studying the synergistic effects of the bacterial community remains challenging due to its complexity. The omnivorous nematode Pristionchus pacificus has limited digestive efficiency on bacteria. Therefore, we established a bacterial collection that represents the natural gut microbiota that are resistant to digestion. Using this collection, we show that the bacterium Lysinibacillus xylanilyticus by itself provides limited nutritional value, but in combination with Escherichia coli, it significantly promotes life-history traits of P. pacificus by regulating the neuroendocrine peptide in sensory neurons. This gut-to-brain communication depends on undigested L. xylanilyticus providing Pristionchus nematodes a specific fitness advantage to compete with nematodes that rupture bacteria efficiently. Using RNA-seq and CRISPR-induced mutants, we show that 1-h exposure to L. xylanilyticus is sufficient to stimulate the expression of daf-7-type TGF-ß signaling ligands, which induce a global transcriptome change. In addition, several effects of L. xylanilyticus depend on TGF-ß signaling, including olfaction, body size regulation, and a switch of energy allocation from lipid storage to reproduction. Our results reveal the beneficial effects of a gut bacterium to modify life-history traits and maximize nematode survival in natural habitats.


Subject(s)
Gastrointestinal Microbiome , Nematoda , Rhabditida , Animals , Bacteria , Caenorhabditis elegans/physiology , Nematoda/physiology , Signal Transduction , Transforming Growth Factor beta/metabolism
4.
Vitam Horm ; 119: 471-489, 2022.
Article in English | MEDLINE | ID: mdl-35337632

ABSTRACT

The round worms or nematodes are the largest phylum of animals with an estimated species number of more than one million. Nematodes have invaded all ecosystems and are known from all continents including Antarctica. Parasitic species infest plants, animals and humans often with high host-specificity. Free-living species are known from marine, fresh water and soil systems, the latter of which contain many culturable species. This includes Caenorhabditis elegans, a species that was developed as one of the most prominent model systems in modern biology since the 1960ies. Pristionchus pacificus is a second nematode model organism that can easily be cultured in the laboratory. This species shows a number of complex traits including omnivorous feeding and the capability of predation on other nematodes. Predation depends on the formation of teeth-like denticles in the mouth of P. pacificus, structures unknown from C. elegans and most other nematodes. Here, we review the current knowledge about the role of vitamin B12 for the predatory behavior in P. pacificus and correlate its role with that on the physiology and development in C. elegans.


Subject(s)
Nematoda , Predatory Behavior , Animals , Caenorhabditis elegans/physiology , Ecosystem , Humans , Nematoda/physiology , Vitamin B 12 , Vitamins
5.
Mol Biol Evol ; 39(2)2022 02 03.
Article in English | MEDLINE | ID: mdl-34978575

ABSTRACT

Horizontal gene transfer (HGT) enables the acquisition of novel traits via non-Mendelian inheritance of genetic material. HGT plays a prominent role in the evolution of prokaryotes, whereas in animals, HGT is rare and its functional significance is often uncertain. Here, we investigate horizontally acquired cellulase genes in the free-living nematode model organism Pristionchus pacificus. We show that these cellulase genes 1) are likely of eukaryotic origin, 2) are expressed, 3) have protein products that are secreted and functional, and 4) result in endo-cellulase activity. Using CRISPR/Cas9, we generated an octuple cellulase mutant, which lacks all eight cellulase genes and cellulase activity altogether. Nonetheless, this cellulase-null mutant is viable and therefore allows a detailed analysis of a gene family that was horizontally acquired. We show that the octuple cellulase mutant has associated fitness costs with reduced fecundity and slower developmental speed. Furthermore, by using various Escherichia coli K-12 strains as a model for cellulosic biofilms, we demonstrate that cellulases facilitate the procurement of nutrients from bacterial biofilms. Together, our analysis of cellulases in Pristionchus provides comprehensive evidence from biochemistry, genetics, and phylogeny, which supports the integration of horizontally acquired genes into the complex life history strategy of this soil nematode.


Subject(s)
Cellulases , Gene Transfer, Horizontal , Rhabditida , Animals , Cellulases/genetics , Escherichia coli K12 , Phylogeny , Rhabditida/enzymology , Rhabditida/genetics
6.
Elife ; 102021 07 22.
Article in English | MEDLINE | ID: mdl-34292157

ABSTRACT

The ratio of microbial population size relative to the amount of host tissue, or 'microbial load', is a fundamental metric of colonization and infection, but it cannot be directly deduced from microbial amplicon data such as 16S rRNA gene counts. Because existing methods to determine load, such as serial dilution plating, quantitative PCR, and whole metagenome sequencing add substantial cost and/or experimental burden, they are only rarely paired with amplicon sequencing. We introduce host-associated microbe PCR (hamPCR), a robust strategy to both quantify microbial load and describe interkingdom microbial community composition in a single amplicon library. We demonstrate its accuracy across multiple study systems, including nematodes and major crops, and further present a cost-saving technique to reduce host overrepresentation in the library prior to sequencing. Because hamPCR provides an accessible experimental solution to the well-known limitations and statistical challenges of compositional data, it has far-reaching potential in culture-independent microbiology.


Subject(s)
Microbiota/genetics , Polymerase Chain Reaction/methods , Arabidopsis/microbiology , Bacteria/classification , Bacteria/genetics , Gene Library , Host Microbial Interactions/genetics , Humans , Oomycetes , RNA, Ribosomal, 16S/genetics , Zea mays/microbiology
7.
Environ Microbiol ; 23(9): 5102-5113, 2021 09.
Article in English | MEDLINE | ID: mdl-33587771

ABSTRACT

Cross-kingdom interactions involve dynamic processes that shape terrestrial ecosystems and represent striking examples of co-evolution. The multifaceted relationships of entomopathogenic nematodes with their insect hosts and symbiotic bacteria are well-studied cases of co-evolution and pathogenicity. In contrast, microbial interactions in soil after the natural death of insects and other invertebrates are minimally understood. In particular, the turnover and succession of nematodes and bacteria during insect decay have not been well documented - although it represents a rich ecological niche with multiple species interactions. Here, we utilize developmentally plastic nematode Pristionchus pacificus and its associated scarab beetles as models. On La Réunion Island, we collected rhinoceros beetle Oryctes borbonicus, induced death, and placed carcasses in cages both on the island and in a mock-natural environment in the laboratory controlling for high spatial and temporal resolution. Investigating nematode population density and dispersal dynamics, we were able to connect two imperative plasticities, dauer and mouth form. We observed a biphasic 'boom and bust' dispersal dynamic of dauer larvae that corresponds to bacterial load on carcasses but not bacterial type. Strikingly, all post-dauer adults have the predatory mouth form, demonstrating novel intricate interactions on decaying insect hosts. Thus, ecologically relevant survival strategies incorporate critical plastic traits.


Subject(s)
Coleoptera , Nematoda , Animals , Bacterial Load , Ecosystem , Mouth
8.
BMC Evol Biol ; 20(1): 147, 2020 11 07.
Article in English | MEDLINE | ID: mdl-33160317

ABSTRACT

BACKGROUND: Phenotypic convergence between distinct species provides an opportunity to examine the predictability of genetic evolution. Unrelated species sharing genetic underpinnings for phenotypic convergence suggests strong genetic constraints, and thus high predictability of evolution. However, there is no clear big picture of the genomic constraints on convergent evolution. Genome-based phylogenies have confirmed many cases of phenotypic convergence in birds, making them a good system for examining genetic constraints in phenotypic convergence. In this study, we used hierarchical genomic approaches to estimate genetic constraints in three convergent avian traits: nocturnality, raptorial behavior and foot-propelled diving. RESULTS: Phylogeny-based hypothesis tests and positive selection tests were applied to compare 16 avian genomes, representing 14 orders, and identify genes with strong convergence signals. We found 43 adaptively convergent genes (ACGs) associated with the three phenotypic convergence cases and assessed genetic constraints in all three cases, from (amino acid) site mutations to genetic pathways. We found that the avian orders shared few site mutations in the ACGs that contributed to the convergent phenotypes, and that these ACGs were not enriched in any genetic pathways. In addition, different pairs of orders with convergent foot-propelled diving or raptorial behaviors shared few ACGs. We also found that closely related orders that shared foot-propelled diving behavior did not share more ACGs than did distinct orders, suggesting that convergence among these orders could not be explained by their initial genomic backgrounds. CONCLUSIONS: Our analyses of three avian convergence events suggest low constraints for phenotypic convergence across multiple genetic levels, implying that genetic evolution is unpredictable at the phylogenetic level of avian order. Ours is one of first studies to apply hierarchical genomic examination to multiple avian convergent cases to assess the genetic constraints in life history trait evolution.


Subject(s)
Birds/classification , Evolution, Molecular , Phenotype , Phylogeny , Animals , Behavior, Animal , Genomics , Selection, Genetic
9.
Genetics ; 216(4): 947-956, 2020 12.
Article in English | MEDLINE | ID: mdl-33060138

ABSTRACT

A lack of appropriate molecular tools is one obstacle that prevents in-depth mechanistic studies in many organisms. Transgenesis, clustered regularly interspaced short palindromic repeats (CRISPR)-associated engineering, and related tools are fundamental in the modern life sciences, but their applications are still limited to a few model organisms. In the phylum Nematoda, transgenesis can only be performed in a handful of species other than Caenorhabditis elegans, and additionally, other species suffer from significantly lower transgenesis efficiencies. We hypothesized that this may in part be due to incompatibilities of transgenes in the recipient organisms. Therefore, we investigated the genomic features of 10 nematode species from three of the major clades representing all different lifestyles. We found that these species show drastically different codon usage bias and intron composition. With these findings, we used the species Pristionchus pacificus as a proof of concept for codon optimization and native intron addition. Indeed, we were able to significantly improve transgenesis efficiency, a principle that may be usable in other nematode species. In addition, with the improved transgenes, we developed a fluorescent co-injection marker in P. pacificus for the detection of CRISPR-edited individuals, which helps considerably to reduce associated time and costs.


Subject(s)
CRISPR-Cas Systems , Codon Usage , Gene Editing/methods , Rhabditida/genetics , Transgenes , Animals , Gene Editing/standards , Introns
10.
ISME J ; 14(7): 1911, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32246130

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

11.
ISME J ; 14(6): 1494-1507, 2020 06.
Article in English | MEDLINE | ID: mdl-32152389

ABSTRACT

Although the microbiota is known to affect host development, metabolism, and immunity, its impact on host behavior is only beginning to be understood. In order to better characterize behavior modulation by host-associated microorganisms, we investigated how bacteria modulate complex behaviors in the nematode model organism Pristionchus pacificus. This nematode is a predator that feeds on the larvae of other nematodes, including Caenorhabditis elegans. By growing P. pacificus on different bacteria and testing their ability to kill C. elegans, we reveal large differences in killing efficiencies, with a Novosphingobium species showing the strongest enhancement. This enhanced killing was not accompanied by an increase in feeding, which is a phenomenon known as surplus killing, whereby predators kill more prey than necessary for sustenance. Our RNA-seq data demonstrate widespread metabolic rewiring upon exposure to Novosphingobium, which facilitated screening of bacterial mutants with altered transcriptional responses. We identified bacterial production of vitamin B12 as an important cause of such enhanced predatory behavior. Although vitamin B12 is an essential cofactor for detoxification and metabolite biosynthesis, shown previously to accelerate development in C. elegans, supplementation with this enzyme cofactor amplified surplus killing in P. pacificus, whereas mutants in vitamin B12-dependent pathways reduced surplus killing. By demonstrating that production of vitamin B12 by host-associated microbiota can affect complex host behaviors, we reveal new connections between animal diet, microbiota, and nervous system.


Subject(s)
Bacteria/metabolism , Nematoda/physiology , Vitamin B 12/metabolism , Animals , Caenorhabditis elegans/microbiology , Microbiota , Nematoda/microbiology , Predatory Behavior , Vitamins/metabolism
12.
Genome Biol Evol ; 10(8): 2130-2139, 2018 08 01.
Article in English | MEDLINE | ID: mdl-30102350

ABSTRACT

Convergent evolution, a process by which organisms evolved independently to have similar traits, provides opportunities to understand adaptation. The bacterial genus Mycoplasma contains multiple species that evolved independently to become ruminant pathogens, which represents an interesting study system for investigating the process. In this work, we determined the genome sequences of 11 Entomoplasma/Mesoplasma species. This new data set, together with the other available Mollicutes genomes, provided comprehensive taxon sampling for inferring the gene content evolution that led to the emergence of Mycoplasma Mycoides cluster. Our results indicated that the most recent common ancestor (MRCA) of the Mycoides-Entomoplasmataceae clade lost ∼15% of the core genes when it diverged from the Spiroplasma Apis clade. After this initial wave of genome reduction, relatively few gene gains or losses were inferred until the emergence of the Mycoides cluster. Compared with those Entomoplasmataceae lineages that maintained the association with insects, the MRCA of the Mycoides cluster experienced a second wave of gene losses, as well as acquiring >100 novel genes through horizontal gene transfer. These gene acquisitions involved many with the Mycoplasma Hominis/Pneumoniae lineages as the putative donors, suggesting that gene exchanges among these vertebrate symbionts with distinct phylogenetic affiliations may be important in the emergence of the Mycoides cluster. These findings demonstrated that the gene content of bacterial genomes could be exceedingly dynamic, even for those symbionts with highly reduced genomes. Moreover, the emergence of novel pathogens may involve extensive remodeling of gene content, rather than acquisition of few virulence genes.


Subject(s)
Mycoplasma/classification , Mycoplasma/genetics , Biological Evolution , Genes, Bacterial , Gram-Negative Bacteria/classification , Gram-Negative Bacteria/genetics , Phylogeny , Synteny
13.
Genome Announc ; 6(18)2018 May 03.
Article in English | MEDLINE | ID: mdl-29724836

ABSTRACT

Spiroplasma monobiae MQ-1T (ATCC 33825) was isolated from the hemolymph of an adult vespid wasp (Monobia quadridens) collected in Maryland. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species.

14.
Genome Announc ; 6(16)2018 Apr 19.
Article in English | MEDLINE | ID: mdl-29674553

ABSTRACT

Spiroplasma floricola 23-6T (ATCC 29989) was isolated from the flower surface of a tulip tree (Liriodendron tulipifera L.). Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species.

15.
Genome Biol Evol ; 9(12): 3246-3259, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29177479

ABSTRACT

Genetic differentiation among symbiotic bacteria is important in shaping biodiversity. The genus Spiroplasma contains species occupying diverse niches and is a model system for symbiont evolution. Previous studies have established that two mosquito-associated species have diverged extensively in their carbohydrate metabolism genes despite having a close phylogenetic relationship. Notably, although the commensal Spiroplasma diminutum lacks identifiable pathogenicity factors, the pathogenic Spiroplasma taiwanense was found to have acquired a virulence factor glpO and its associated genes through horizontal transfer. However, it is unclear if these acquired genes have been integrated into the regulatory network. In this study, we inferred the gene content evolution in these bacteria, as well as examined their transcriptomes in response to glucose availability. The results indicated that both species have many more gene acquisitions from the Mycoides-Entomoplasmataceae clade, which contains several important pathogens of ruminants, than previously thought. Moreover, several acquired genes have higher expression levels than the vertically inherited homologs, indicating possible functional replacement. Finally, the virulence factor and its functionally linked genes in S. taiwanense were up-regulated in response to glucose starvation, suggesting that these acquired genes are under expression regulation and the pathogenicity may be a stress response. In summary, although differential gene losses are a major process for symbiont divergence, gene gains are critical in counteracting genome degradation and driving diversification among facultative symbionts.


Subject(s)
Culicidae/microbiology , Gene Transfer, Horizontal , Genes, Bacterial , Spiroplasma/genetics , Symbiosis , Virulence Factors/genetics , Animals , DNA, Bacterial , Evolution, Molecular , Genome, Bacterial , Phylogeny , Spiroplasma/classification , Transcriptome
16.
Genome Announc ; 5(37)2017 Sep 14.
Article in English | MEDLINE | ID: mdl-28912320

ABSTRACT

Spiroplasma corruscae EC-1T (DSM 19793) was isolated from the gut of a lampryid beetle (Ellychnia corrusca) collected in Beltsville, MD, USA, in 1983. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species.

17.
Genome Announc ; 5(10)2017 Mar 09.
Article in English | MEDLINE | ID: mdl-28280009

ABSTRACT

Spiroplasma sp. NBRC 100390 was initially described as a duplicate of S. atrichopogonis GNAT3597T (=ATCC BAA-520T) but later found to be different in the 16S rDNA sequences. Here, we report the complete genome sequence of this bacterium to establish its identity and to facilitate future investigation.

18.
Genome Announc ; 5(2)2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28082500

ABSTRACT

Spiroplasma sp. TU-14 was isolated from a contaminated sample of Entomoplasma lucivorax PIPN-2T obtained from the International Organization for Mycoplasmology collection. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma spp.

19.
Genome Announc ; 4(5)2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27795290

ABSTRACT

Spiroplasma helicoides TABS-2T (DSM 22551) was isolated from the gut of a horsefly (Tabanus abactor) collected near Ardmore, Oklahoma, USA, in 1987. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma species.

20.
Genome Announc ; 4(5)2016 Sep 22.
Article in English | MEDLINE | ID: mdl-27660788

ABSTRACT

Spiroplasma turonicum Tab4c(T) was isolated from a horse fly (Haematopota sp.; probably Haematopota pluvialis) collected at Champchevrier, Indre-et-Loire, Touraine, France, in 1991. Here, we report the complete genome sequence of this bacterium to facilitate the investigation of its biology and the comparative genomics among Spiroplasma spp.

SELECTION OF CITATIONS
SEARCH DETAIL
...