Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
In Vivo ; 37(6): 2524-2532, 2023.
Article in English | MEDLINE | ID: mdl-37905652

ABSTRACT

BACKGROUND/AIM: Autosomal dominant polycystic kidney disease (ADPKD) is a prevalent genetic disorder primarily caused by mutations in Pkd1 (PC1), which account for the majority of ADPKD cases. These mutations contribute to the formation of cysts in the kidneys and other organs, ultimately leading to renal failure. Unfortunately, there are currently no available preventive treatments for this disease. MATERIALS AND METHODS: In this study, we utilized Pkd1-knockdown mice and cells to investigate the potential involvement of O-GlcNAcylation in the progression of PKD. Additionally, we examined the effects of thiamet G, an inhibitor of O-GlcNAcase (OGA), on PKD mice. RESULTS: Our findings indicate that both O-GlcNAcylation and OGT (O-GlcNAc transferase) were downregulated in the renal tissues of Pkd1-silenced mice. Furthermore, O-GlcNAcylation was shown to regulate the stability and function of the C-terminal cytoplasmic tail (CTT) of PC1. Treatment of PKD mice with thiamet G resulted in a reduction of renal cytogenesis in these animals. CONCLUSION: These results highlight the unique role of O-GlcNAcylation in the development of cyst formation in PKD and propose it as a potential therapeutic target for the treatment of PKD.


Subject(s)
Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Mice , Animals , Polycystic Kidney, Autosomal Dominant/drug therapy , Polycystic Kidney, Autosomal Dominant/genetics , Polycystic Kidney Diseases/drug therapy , Polycystic Kidney Diseases/genetics , Kidney
2.
J Hered ; 112(2): 192-203, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33675222

ABSTRACT

Insular flying foxes are keystone species in island ecosystems due to their critical roles in plant pollination and seed dispersal. These species are vulnerable to population decline because of their small populations and low reproductive rates. The Formosan flying fox (Pteropus dasymallus formosus) is one of the 5 subspecies of the Ryukyu flying fox. Pteropus dasymallus formosus has suffered from a severe decline and is currently recognized as a critically endangered population in Taiwan. On the contrary, the Orii's flying fox (Pteropus dasymallus inopinatus) is a relatively stable population inhabiting Okinawa Island. Here, we applied a genomic approach called double digest restriction-site associated DNA sequencing to study these 2 subspecies for a total of 7 individuals. We detected significant genetic structure between the 2 populations. Despite their contrasting contemporary population sizes, both populations harbor very low degrees of genetic diversity. We further inferred their demographic history based on the joint folded site frequency spectrum and revealed that both P. d. formosus and P. d. inopinatus had maintained small population sizes for a long period of time after their divergence. Recently, these populations experienced distinct trajectories of demographic changes. While P. d. formosus suffered from a drastic ~10-fold population decline not long ago, P. d. inopinatus underwent a ~4.5-fold population expansion. Our results suggest separate conservation management for the 2 populations-population recovery is urgently needed for P. d. formosus while long-term monitoring for adverse genetic effects should be considered for P. d. inopinatus.


Subject(s)
Chiroptera/genetics , Genetic Variation , Genetics, Population , Animals , Conservation of Natural Resources , Endangered Species , Inbreeding , Polymorphism, Single Nucleotide , Population Density , Population Dynamics , Sequence Analysis, DNA , Taiwan
SELECTION OF CITATIONS
SEARCH DETAIL
...