Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nucl Med Mol Imaging ; 42(7): 1093-105, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25813354

ABSTRACT

PURPOSE: Hypoxia-inducible factor 1α (HIF-1α) activity is one of the major players in hypoxia-mediated glioma progression and resistance to therapies, and therefore the focus of this study was the evaluation of HIF-1α modulation in relation to tumour response with the purpose of identifying imaging biomarkers able to document tumour response to treatment in a murine glioma model. METHODS: U251-HRE-mCherry cells expressing Luciferase under the control of a hypoxia responsive element (HRE) and mCherry under the control of a constitutive promoter were used to assess HIF-1α activity and cell survival after treatment, both in vitro and in vivo, by optical, MRI and positron emission tomography imaging. RESULTS: This cell model can be used to monitor HIF-1α activity after treatment with different drugs modulating transduction pathways involved in its regulation. After temozolomide (TMZ) treatment, HIF-1α activity is early reduced, preceding cell cytotoxicity. Optical imaging allowed monitoring of this process in vivo, and carbonic anhydrase IX (CAIX) expression was identified as a translatable non-invasive biomarker with potential clinical significance. A preliminary in vitro evaluation showed that reduction of HIF-1α activity after TMZ treatment was comparable to the effect of an Hsp90 inhibitor, opening the way for further elucidation of its mechanism of action. CONCLUSION: The results of this study suggest that the U251-HRE-mCherry cell model can be used for the monitoring of HIF-1α activity through luciferase and CAIX expression. These cells can become a useful tool for the assessment and improvement of new targeted tracers for potential theranostic procedures.


Subject(s)
Antineoplastic Agents/therapeutic use , Biomarkers, Tumor/metabolism , Brain Neoplasms/drug therapy , Dacarbazine/analogs & derivatives , Glioma/drug therapy , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Animals , Biomarkers, Tumor/genetics , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , Cell Line, Tumor , Dacarbazine/therapeutic use , Drug Evaluation, Preclinical/methods , Female , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , Mice, Nude , Optical Imaging , Temozolomide
2.
Mol Imaging Biol ; 16(2): 210-23, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24002614

ABSTRACT

PURPOSE: The aim of this study was to characterize a cell-based model for the molecular study of hypoxia-inducible factor (HIF)-1α activity, in the context of hypoxia, by means of different imaging techniques. PROCEDURES: Engineered U251-HRE glioma cells were used to analyze the molecular mechanisms underlying HIF-1α activity in vitro in relation to luciferase expression. The same cells were orthotopically implanted in mice to evaluate tumor progression and hypoxia induction by bioluminescence imaging, fluorescence imaging, positron emission tomography (PET), and magnetic resonance imaging (MRI). RESULTS: In vitro analyses highlighted the relationship between HIF-1α and luciferase activity in hypoxic conditions and after pharmacological treatments in U251-HRE cells. Through in vivo studies, it was possible to assess hypoxia establishment in relation to tumor growth by optical imaging, PET and MRI. CONCLUSIONS: The findings of this study indicate that the U251-HRE orthotopic murine model can be used to reliably evaluate processes modulating HIF-1α activity, using both molecular and preclinical non-invasive imaging techniques.


Subject(s)
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Models, Biological , Multimodal Imaging/methods , Animals , Brain Neoplasms/diagnosis , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Hypoxia/drug effects , Cell Line, Tumor , Cell Shape/drug effects , Deferoxamine/pharmacology , Glioma/diagnosis , Glioma/metabolism , Glioma/pathology , Humans , Immunohistochemistry , Luciferases/metabolism , Magnetic Resonance Imaging , Mice , Optical Imaging , Positron-Emission Tomography , Signal Transduction/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...