Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Biochem Sci ; 48(10): 883-893, 2023 10.
Article in English | MEDLINE | ID: mdl-37567806

ABSTRACT

Guanylate-binding proteins (GBPs) are a family of intracellular proteins which have diverse biological functions, including pathogen sensing and host defense against infectious disease. These proteins are expressed in response to interferon (IFN) stimulation and can localize and target intracellular microbes (e.g., bacteria and viruses) by protein trafficking and membrane binding. These properties contribute to the ability of GBPs to induce inflammasome activation, inflammation, and cell death, and to directly disrupt pathogen membranes. Recent biochemical studies have revealed that human GBP1, GBP2, and GBP3 can directly bind to the lipopolysaccharide (LPS) of Gram-negative bacteria. In this review we discuss emerging data highlighting the functional versatility of GBPs, with a focus on their molecular mechanisms of pattern recognition and antimicrobial activity.


Subject(s)
Anti-Infective Agents , Carrier Proteins , Humans , GTP-Binding Proteins/chemistry , Inflammasomes/metabolism , Bacteria/metabolism , Anti-Infective Agents/pharmacology
2.
EMBO Rep ; 24(6): e54600, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37073791

ABSTRACT

Inflammasome signaling is a central pillar of innate immunity triggering inflammation and cell death in response to microbes and danger signals. Here, we show that two virulence factors from the human bacterial pathogen Clostridium perfringens are nonredundant activators of the NLRP3 inflammasome in mice and humans. C. perfringens lecithinase (also known as phospolipase C) and C. perfringens perfringolysin O induce distinct mechanisms of activation. Lecithinase enters LAMP1+ vesicular structures and induces lysosomal membrane destabilization. Furthermore, lecithinase induces the release of the inflammasome-dependent cytokines IL-1ß and IL-18, and the induction of cell death independently of the pore-forming proteins gasdermin D, MLKL and the cell death effector protein ninjurin-1 or NINJ1. We also show that lecithinase triggers inflammation via the NLRP3 inflammasome in vivo and that pharmacological blockade of NLRP3 using MCC950 partially prevents lecithinase-induced lethality. Together, these findings reveal that lecithinase activates an alternative pathway to induce inflammation during C. perfringens infection and that this mode of action can be similarly exploited for sensing by a single inflammasome.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Clostridium perfringens/metabolism , Virulence Factors , Inflammation , Interleukin-1beta/metabolism , Nerve Growth Factors , Cell Adhesion Molecules, Neuronal
3.
EMBO J ; 42(6): e112558, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36762431

ABSTRACT

Moraxella catarrhalis is an important human respiratory pathogen and a major causative agent of otitis media and chronic obstructive pulmonary disease. Toll-like receptors contribute to, but cannot fully account for, the complexity of the immune response seen in M. catarrhalis infection. Using primary mouse bone marrow-derived macrophages to examine the host response to M. catarrhalis infection, our global transcriptomic and targeted cytokine analyses revealed activation of immune signalling pathways by both membrane-bound and cytosolic pattern-recognition receptors. We show that M. catarrhalis and its outer membrane vesicles or lipooligosaccharide (LOS) can activate the cytosolic innate immune sensor caspase-4/11, gasdermin-D-dependent pyroptosis, and the NLRP3 inflammasome in human and mouse macrophages. This pathway is initiated by type I interferon signalling and guanylate-binding proteins (GBPs). We also show that inflammasomes and GBPs, particularly GBP2, are required for the host defence against M. catarrhalis in mice. Overall, our results reveal an essential role for the interferon-inflammasome axis in cytosolic recognition and immunity against M. catarrhalis, providing new molecular targets that may be used to mitigate pathological inflammation triggered by this pathogen.


Subject(s)
Caspases , Inflammasomes , Mice , Humans , Animals , Caspases/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Moraxella catarrhalis/metabolism , Carrier Proteins , Immunity, Innate
4.
Cell Microbiol ; 23(4): e13309, 2021 04.
Article in English | MEDLINE | ID: mdl-33426791

ABSTRACT

Inflammasomes are cytosolic innate immune complexes, which assemble in mammalian cells in response to microbial components and endogenous danger signals. A major family of inflammasome activators is bacterial toxins. Inflammasome sensor proteins, such as the nucleotide-binding oligomerisation domain-like receptor (NLR) family members NLRP1b and NLRP3, and the tripartite motif family member Pyrin+ efflux triggered by pore-forming toxins or by other toxin-induced homeostasis-altering events such as lysosomal rupture. Pyrin senses perturbation of host cell functions induced by certain enzymatic toxins resulting in impairment of RhoA GTPase activity. Assembly of the inflammasome complex activates the cysteine protease caspase-1, leading to the proteolytic cleavage of the proinflammatory cytokines IL-1ß and IL-18, and the pore-forming protein gasdermin D causing pyroptosis. In this review, we discuss the latest progress in our understanding on the activation mechanisms of inflammasome complexes by bacterial toxins and effector proteins and explore avenues for future research into the relationships between inflammasomes and bacterial toxins.


Subject(s)
Bacterial Toxins/immunology , Inflammasomes/immunology , Animals , Caspase 1/immunology , Humans , Inflammasomes/genetics , Inflammasomes/metabolism , Interleukin-18/immunology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis
SELECTION OF CITATIONS
SEARCH DETAIL
...