Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Glycobiology ; 23(11): 1270-80, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23964097

ABSTRACT

Hyaluronan (HA) is widely detected in biological samples and its concentration is most commonly determined by the use of a labeled specific HA binding protein (aggrecan G1-IGD-G2, HABP), employing membrane blotting and sandwich enzyme-linked immunosorbent assay (ELISA)-like methods. However, the detected signal intensity or the quantified value obtained by using these surface-based methods is related to the molecular mass (M) of HA, especially for HA in the low M range below ~150 kDa. At the same mass or mass concentration, higher M HA gives a higher signal than lower M HA. We have experimentally determined the quantitative relationship between the M of HA (in the range 20-150 kDa) and the relative signal intensity in comparison with a standard HA, in a sandwich ELISA-like assay. An M-dependent signal correction factor (SCF) was calculated and used to correct the signal intensity, so that the corrected concentration value would more accurately reflect the true HA concentration in solution. The SCF for polydisperse low M HA was also calculated and compared with experimental results. When the molecular mass distribution of an HA sample is determined by a method such as gel electrophoresis, then its appropriately averaged SCF can be calculated and used to correct the signal in sandwich ELISA to obtain a more accurate concentration estimation. The correction method works for HA with M between ~150 and 20 kDa, but lower M HA is too poorly detected for useful analysis. The physical basis of the M-dependent detection is proposed to be the increase in detector-accessible fraction of each surface-bound molecule as M increases.


Subject(s)
Hyaluronan Receptors/chemistry , Hyaluronic Acid/chemistry , Biotinylation , Densitometry , Electrophoresis, Polyacrylamide Gel , Enzyme-Linked Immunosorbent Assay , Humans , Immunoblotting , Molecular Weight
2.
Anal Biochem ; 417(1): 41-9, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21684248

ABSTRACT

Agarose and polyacrylamide gel electrophoresis systems for the molecular mass-dependent separation of hyaluronan (HA) in the size range of approximately 5-500 kDa were investigated. For agarose-based systems, the suitability of different agarose types, agarose concentrations, and buffer systems was determined. Using chemoenzymatically synthesized HA standards of low polydispersity, the molecular mass range was determined for each gel composition over which the relationship between HA mobility and logarithm of the molecular mass was linear. Excellent linear calibration was obtained for HA molecular mass as low as approximately 9 kDa in agarose gels. For higher resolution separation, and for extension to molecular masses as low as approximately 5 kDa, gradient polyacrylamide gels were superior. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in a sample as well as calculation of weight-average and number-average values. The methods were validated for polydisperse HA samples with viscosity-average molecular masses of 112, 59, 37, and 22 kDa at sample loads of 0.5 µg (for polyacrylamide) to 2.5 µg (for agarose). Use of the methods for electrophoretic mobility shift assays was demonstrated for binding of the HA-binding region of aggrecan (recombinant human aggrecan G1-IGD-G2 domains) to a 150-kDa HA standard.


Subject(s)
Electrophoresis, Agar Gel/methods , Electrophoresis, Polyacrylamide Gel/methods , Hyaluronic Acid/analysis , Hyaluronic Acid/chemistry , Buffers , Calibration , Densitometry , Electrophoretic Mobility Shift Assay , Humans , Hyaluronic Acid/isolation & purification , Molecular Weight , Reference Standards , Reproducibility of Results , Sepharose/chemistry
3.
Anal Biochem ; 417(1): 50-6, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21683677

ABSTRACT

The molecular mass of the polysaccharide hyaluronan (HA) is an important determinant of its biological activity and physicochemical properties. One method currently used for the analysis of the molecular mass distribution of an HA sample is gel electrophoresis. In the current work, an improved agarose gel electrophoresis method for analysis of high molecular mass HA is presented and validated. HA mobility in 0.5% agarose minigels was found to be linearly related to the logarithm of molecular mass in the range from approximately 200 to 6000 kDa. A sample load of 2.5 µg for polydisperse HA samples was employed. Densitometric scanning of stained gels allowed analysis of the range of molecular masses present in the sample as well as calculation of weight-average and number-average values. The method was validated for a polydisperse HA sample with a weight-average molecular mass of approximately 2000 kDa. Excellent agreement was found between the weight-average molecular mass determined by electrophoresis and that determined by rheological measurement of the solution viscosity. The revised method was then used to show that heating solutions of HA at 100°C, followed by various cooling procedures, had no effect on the HA molecular mass distribution.


Subject(s)
Electrophoresis, Agar Gel/methods , Hyaluronic Acid/analysis , Hyaluronic Acid/chemistry , Calibration , Densitometry , Molecular Weight , Reference Standards , Reproducibility of Results , Temperature , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...