Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomolecules ; 13(1)2022 12 21.
Article in English | MEDLINE | ID: mdl-36671398

ABSTRACT

BACKGROUND: Multi-omics delivers more biological insight than targeted investigations. We applied multi-omics to patients with heart failure with reduced ejection fraction (HFrEF). METHODS: 46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas chromatography mass spectrometry (LC-MS/GC-MS) and solid-phase microextraction (SPME) volatilomics in plasma and urine. HFrEF was defined using left ventricular global longitudinal strain, ejection fraction and NTproBNP. A consumer breath acetone (BrACE) sensor validated results in n = 73. RESULTS: 28 metabolites were identified by GCMS, 35 by LCMS and 4 volatiles by SPME in plasma and urine. Alanine, aspartate and glutamate, citric acid cycle, arginine biosynthesis, glyoxylate and dicarboxylate metabolism were altered in HFrEF. Plasma acetone correlated with NT-proBNP (r = 0.59, 95% CI 0.4 to 0.7), 2-oxovaleric and cis-aconitic acid, involved with ketone metabolism and mitochondrial energetics. BrACE > 1.5 ppm discriminated HF from other cardiac pathology (AUC 0.8, 95% CI 0.61 to 0.92, p < 0.0001). CONCLUSION: Breath acetone discriminated HFrEF from other cardiac pathology using a consumer sensor, but was not cardiac specific.


Subject(s)
Heart Failure , Humans , Acetone , Stroke Volume , Biomarkers/metabolism , Metabolomics
2.
Future Cardiol ; 17(8): 1335-1347, 2021 11.
Article in English | MEDLINE | ID: mdl-34008412

ABSTRACT

Aim: Multiomics delivers more biological insight than targeted investigations. We applied multiomics to patients with heart failure (HF) and reduced ejection fraction (HFrEF), with machine learning applied to advanced ECG (AECG) and echocardiography artificial intelligence (Echo AI). Patients & methods: In total, 46 patients with HFrEF and 20 controls underwent metabolomic profiling, including liquid/gas chromatography-mass spectrometry and solid-phase microextraction volatilomics in plasma and urine. HFrEF was defined using left ventricular (LV) global longitudinal strain, EF and N-terminal pro hormone BNP. AECG and Echo AI were performed over 5 min, with a subset of patients undergoing a virtual reality mental stress test. Results: A-ECG had similar diagnostic accuracy as N-terminal pro hormone BNP for HFrEF (area under the curve = 0.95, 95% CI: 0.85-0.99), and correlated with global longitudinal strain (r = -0.77, p < 0.0001), while Echo AI-generated measurements correlated well with manually measured LV end diastolic volume r = 0.77, LV end systolic volume r = 0.8, LVEF r = 0.71, indexed left atrium volume r = 0.71 and indexed LV mass r = 0.6, p < 0.005. AI-LVEF and other HFrEF biomarkers had a similar discrimination for HFrEF (area under the curve AI-LVEF = 0.88; 95% CI: -0.03 to 0.15; p = 0.19). Virtual reality mental stress test elicited arrhythmic biomarkers on AECG and indicated blunted autonomic responsiveness (alpha 2 of RR interval variability, p = 1 × 10-4) in HFrEF. Conclusion: Multiomics-related machine learning shows promise for the assessment of HF.


Lay abstract Multiomics is the integration of multiple sources of health information, for example, genomic, metabolite, etc. This delivers more insight than targeted single investigations and provides an ability to perceive subtle individual differences between people. In this study we applied multiomics to patients with heart failure (HF) using DNA sequencing, metabolomics and machine learning applied to ECG echocardiography. We demonstrated significant differences between subsets of patients with HF using these methods. We also showed that machine learning has significant diagnostic potential in identifying HF patients more efficiently than manual or conventional techniques.


Subject(s)
Heart Failure , Ventricular Dysfunction, Left , Virtual Reality , Artificial Intelligence , Heart Failure/diagnostic imaging , Humans , Prognosis , Stroke Volume , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Function, Left
SELECTION OF CITATIONS
SEARCH DETAIL
...