ABSTRACT
We searched for evidence of knockdown resistance (kdr) mutations in the voltage-gated sodium channel gene of Aedes aegypti (Linnaeus) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) mosquitoes from Panama. Conventional PCR was performed on 469 Ae. aegypti and 349 Ae. albopictus. We did not discover kdr mutations in Ae. albopictus, but 2 nonsynonymous kdr mutations, V1016I (found in 101 mosquitoes) and F1534C (found in 29 of the mosquitoes with the V1016I), were detected in Ae. aegypti. These kdr mutations were present in all specimens that were successfully sequenced for both IIS5-S6 and IIIS6 regions, which included samples collected from 8 of the 10 provinces of Panama. No other kdr mutations were found in Ae. aegypti, including V1016G, which has already been reported in Panama. Findings suggest that the V1016I-F1534C variant is prevalent in Panama, which might be related to the introduction and passive movement of mosquitoes as part of the used-tire trade. However, we cannot rule out the possibility that selection on de novo replacement of kdr mutations also partially explains the widespread distribution pattern of these mutations. These 2 ecological and evolutionary processes are not mutually exclusive, though, as they can occur in tandem. Research in Panama needs to calculate the genotypic and allelic frequencies of kdr alleles in local Ae. aegypti populations and to test whether some combinations confer phenotypic resistance or not. Finally, future studies will have to track the introduction and spreading of new kdr mutations in both Aedes species.
ABSTRACT
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was the causative agent of the coronavirus disease 2019 (COVID-19) pandemic. While research on COVID-19 has mainly focused on its epidemiology, pathogenesis, and treatment, studies on the naso-oropharyngeal microbiota have emerged in the last few years as an overlooked area of research. Here, we analyzed the bacterial community composition of the naso-oropharynx in 50 suspected SARS-CoV-2 cases (43 detected, 7 not detected) from Veraguas province (Panama) distributed across five age categories. Statistical analysis revealed no significant differences (p < 0.05) in bacterial alpha and beta diversities between the groups categorized by SARS-CoV-2 test results, age, or patient status. The genera Corynebacterium, Staphylococcus, Prevotella, Streptococcus, and Tepidiphilus were the most abundant in both detected and not-detected SARS-CoV-2 group. The linear discriminant analysis effect size (LEfSe) for biomarker exploration indicated that Veillonella and Prevotella were enriched in detected and hospitalized patients with SARS-CoV-2 relative to non-detected patients, while Thermoanaerobacterium and Haemophilus were enriched in non-detected patients with SARS-CoV-2. The results also indicated that the genus Corynebacterium was found to decrease in patients with detected SARS-CoV-2 relative to those with non-detected SARS-CoV-2. Understanding the naso-oropharyngeal microbiota provides insights into the diversity, composition, and resilience of the microbial community in patients with SARS-CoV-2.
ABSTRACT
Vector-borne diseases are a major source of morbidity in Panama. Herein, we describe historical usage patterns of synthetic insecticides to control arthropod disease vectors in this country. We examine the influence of interventions by vector control programs on the emergence of insecticide resistance. Chemical control has traditionally focused on two mosquito species: Anopheles albimanus, a major regional malaria vector, and Aedes aegypti, a historical vector of yellow fever, and current vector of dengue, chikungunya, and Zika. Countrywide populations of An. albimanus depict hyperirritability to organochlorine insecticides administered by indoor residual spraying, although they appear susceptible to these insecticides in bioassays settings, as well as to organophosphate and carbamate insecticides in field tests. Populations of Ae. aegypti show resistance to pyrethroids, particularly in areas near Panama City, but the spread of resistance remains unknown in Ae. aegypti and Aedes albopictus. A One Health approach is needed in Panama to pinpoint the insecticide resistance mechanisms including the frequency of knockdown mutations and behavioral plasticity in populations of Anopheles and Aedes mosquitoes. This information is necessary to guide the sustainable implementation of chemical control strategies and the use of modern vector control technologies such as genetically modified mosquitoes, and endosymbiont Wolbachia-based biological control.
Subject(s)
Insecticides , Mosquito Control , Mosquito Vectors , Vector Borne Diseases , Animals , Humans , Aedes/drug effects , Anopheles/drug effects , History, 20th Century , History, 21st Century , Insecticide Resistance , Insecticides/pharmacology , Mosquito Control/methods , Mosquito Vectors/drug effects , Panama , Vector Borne Diseases/prevention & controlABSTRACT
Here, the main goal is to assess natural infections of Plasmodium spp. in anophelines in a forest reserve from the same region where we previously found a surprisingly high rate (5.2%) of plasmodia infections (n = 25) in Kerteszia mosquitoes (N = 480) on the slopes of Serra do Mar, Atlantic Forest, Brazil. The mosquito collection sampling was carried out at the Legado das Águas Forest Reserve using CDC light traps and Shannon traps at night (5-10 pm) in 3-day collections in November 2021 and March, April, May, and November 2022. The captured specimens were morphologically identified at the species level and had their genomic DNA extracted in pools of up to 10 mosquitoes/pool. Each pool was tested using 18S qPCR and cytb nested PCR plus sequencing. A total of 5301 mosquitoes, mostly belonging to the genus Kerteszia (99.7%), were sampled and sorted into 773 pools. Eight pools positive for Plasmodium spp. were identified: four for Plasmodium spp., one for P. vivax or P. simium, one for P. malariae or P. brasilianum, and two for the P. falciparum-like parasite. After Sanger sequencing, two results were further confirmed: P. vivax or P. simium and P. malariae or P. brasilianum. The minimum infection rate for Kerteszia mosquitoes was 0.15% (eight positive pools/5285 Kerteszia mosquitoes). The study reveals a lower-than-expected natural infection rate (expected = 5.2% vs. observed = 0.15%). This low rate relates to the absence of Alouatta monkeys as the main simian malaria reservoir in the studied region. Their absence was due to a significant population decline following the reemergence of yellow fever virus outbreaks in the Atlantic Forest from 2016 to 2019. However, this also indicates the existence of alternative reservoirs to infect Kerteszia mosquitoes. The found zoonotic species of Plasmodium, including the P. falciparum-like parasite, may represent a simian malaria risk and thus a challenge for malaria elimination in Brazil.
ABSTRACT
Background: This work aims to analyze the landscape of scientific publications on subjects related to One Health and infectious diseases in Panama. The research questions are: How does the One Health research landscape look like in Panama? Are historical research efforts aligned with the One Health concept? What infectious diseases have received more attention from the local scientific community since 1990? Methods: Boolean searches on the Web of Science, SCOPUS and PubMed were undertaken to evaluate the main trends of publications related to One Health and infectious disease research in the country of Panama, between 1990 and 2019. Results: 4546 publications were identified since 1990, including 3564 peer-reviewed articles interconnected with One Health related descriptors, and 211 articles focused particularly on infectious diseases. A pattern of exponential growth in the number of publications with various contributions from Panamanian institutions was observed. The rate of multidisciplinary research was moderate, whereas those of interinstitutional and intersectoral research ranged from low to very low. Research efforts have centered largely on protozoan, neglected and arthropod-borne diseases with a strong emphasis on malaria, Chagas and leishmaniasis. Conclusion: Panama has scientific capabilities on One Health to tackle future infectious disease threats, but the official collaboration schemes and strategic investment to develop further competencies need to be conciliated with modern times, aka the pandemics era. The main proposition here, addressed to the government of Panama, is to launch a One Health regional center to promote multidisciplinary, interinstitutional and intersectoral research activities in Panama and beyond.
ABSTRACT
Monitoring the invasion process of the Asian tiger mosquito Aedes albopictus and its interaction with the contender Aedes aegypti, is critical to prevent and control the arthropod-borne viruses (i.e., Arboviruses) they transmit to humans. Generally, the superior ecological competitor Ae. albopictus displaces Ae. aegypti from most geographic areas, with the combining factors of biology and environment influencing the competitive outcome. Nonetheless, detailed studies asserting displacement come largely from sub-tropical areas, with relatively less effort being made in tropical environments, including no comprehensive research about Aedes biological interactions in Mesoamerica. Here, we examine contemporary and historical mosquito surveillance data to assess the role of shifting abiotic conditions in shaping the spatiotemporal distribution of competing Aedes species in the Republic of Panama. In accordance with prior studies, we show that Ae. albopictus has displaced Ae. aegypti under suboptimal wet tropical climate conditions and more vegetated environments within the southwestern Azuero Peninsula. Conversely, in the eastern Azuero Peninsula, Ae. aegypti persists with Ae. albopictus under optimal niche conditions in a dry and more seasonal tropical climate. While species displacement was stable over the course of two years, the presence of both species generally appears to fluctuate in tandem in areas of coexistence. Aedes albopictus was always more frequently found and abundant regardless of location and climatic season. The heterogenous environmental conditions of Panama shape the competitive outcome and micro-geographic distribution of Aedes mosquitoes, with potential consequences for the transmission dynamics of urban and sylvatic zoonotic diseases. SUPPLEMENTARY INFORMATION: The online version of this article (10.1007/s10530-021-02482-y).
ABSTRACT
Matrix-assisted laser desorption/ionization (MALDI) time-of-flight mass spectrometry is an analytical method that detects macromolecules that can be used for proteomic fingerprinting and taxonomic identification in arthropods. The conventional MALDI approach uses fresh laboratory-reared arthropod specimens to build a reference mass spectra library with high-quality standards required to achieve reliable identification. However, this may not be possible to accomplish in some arthropod groups that are difficult to rear under laboratory conditions, or for which only alcohol preserved samples are available. Here, we generated MALDI mass spectra of highly abundant proteins from the legs of 18 Neotropical species of adult field-collected hard ticks, several of which had not been analyzed by mass spectrometry before. We then used their mass spectra as fingerprints to identify each tick species by applying machine learning and pattern recognition algorithms that combined unsupervised and supervised clustering approaches. Both Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) classification algorithms were able to identify spectra from different tick species, with LDA achieving the best performance when applied to field-collected specimens that did have an existing entry in a reference library of arthropod protein spectra. These findings contribute to the growing literature that ascertains mass spectrometry as a rapid and effective method to complement other well-established techniques for taxonomic identification of disease vectors, which is the first step to predict and manage arthropod-borne pathogens.
Subject(s)
Ixodidae/chemistry , Proteomics/methods , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Animals , Arthropod Proteins/chemistry , Arthropod Proteins/metabolism , Disease Vectors/classification , Ixodidae/classification , Ixodidae/metabolismABSTRACT
The first patient infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Panama was reported on March 9, 2020. Here, we describe the first case of recovery from coronavirus disease 2019 (COVID-19) in the country. The patient was a 49-year-old male high school teacher, who did not show any primary symptoms of COVID-19 described by health authorities as the signs for medical attention. Nonetheless, he became severely ill over the course of 2 weeks and almost lost the battle against COVID-19. The identification of the first cluster of SARS-CoV-2 community transmission in the secondary school where the patient of this case report taught, led to the closure of the school and, a day after, the shutdown of the national education system, which may have prevented the spread and slowed the transmission rate of COVID-19 during the early stages of invasion. This case report highlights the need to increase awareness among healthcare professionals in Latin America to consider symptoms such as anosmia and dysgeusia as the sentinel signs of COVID-19 infection in order to prevent deaths, especially in high-risk patients.
Subject(s)
COVID-19 , Dysgeusia , Humans , Male , Middle Aged , Panama , SARS-CoV-2 , SchoolsABSTRACT
The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.
La República de Panamá es el segundo país de Centroamérica con la distribución más desigual de la riqueza, ha resultado afectado recientemente por la pandemia de COVID-19 y tiene una de las mayores tasas de pruebas diagnósticas por habitante de la región y, por consiguiente, la mayor tasa de incidencia de COVID-19. Estos aspectos la convierten en un lugar ideal para examinar posibles escenarios de evaluación de la preparación para la epidemia y para plantear oportunidades de investigación en la Región de las Américas. Se abordan dos preguntas importantes y oportunas: ¿Cuáles son los riesgos singulares de la COVID-19 en Panamá que podrían ayudar a otros países de la Región a estar mejor preparados? y ¿Qué tipo de conocimiento científico puede aportar Panamá al estudio regional y mundial de la COVID-19? En este artículo se presentan sugerencias sobre la forma en que la comunidad de investigadores podría apoyar a las autoridades sanitarias locales a planificar medidas ante diferentes escenarios y disminuir la ansiedad de la población. También se presentan oportunidades científicas básicas sobre patógenos pandémicos emergentes para promover la salud mundial desde la perspectiva de un país de ingresos medios.
ABSTRACT
[ABSTRACT]. The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.
[ABSTRACT]. The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.
Subject(s)
Coronavirus Infections , Virus Diseases , Pandemics , Severe acute respiratory syndrome-related coronavirus , Research , Americas , COVID-19 , Coronavirus Infections , Virus Diseases , Pandemics , Severe acute respiratory syndrome-related coronavirus , Research , AmericasABSTRACT
We generated nine coding-complete chikungunya virus genome sequences from blood samples collected during the early 2015 outbreak in Bolivia. Relative to other publicly available chikungunya sequences, the Bolivian samples represent a monophyletic group, suggesting that a single lineage was widely circulating in the country between February and May 2015.
ABSTRACT
We tested 700 serum samples collected throughout Panama from 2015 to 2016 for detecting antibodies and RNA of arboviruses. In convalescent specimens, microsphere immunoassay detected an antibody prevalence of 59.3% for dengue virus (DENV) and 30.3% for Zika virus (ZIKV), which included samples that were collected before the Panamanian surveillance system reported the first case of Zika in the country. For acute sera, the most common arbovirus was DENV with 18 positive samples (6%), followed by four (1.3%) of ZIKV and one (0.6%) of chikungunya virus (CHIKV). Our results indicate a change in the chronology of when ZIKV was first detected in Panama and stress the importance of integrating various approaches to enable improved surveillance of both endemic and emerging arboviruses.
Subject(s)
Arboviruses , Population Surveillance/methods , Zika Virus Infection/diagnosis , Zika Virus , Antibodies, Viral/blood , Chikungunya virus , Dengue Virus , Fluorescent Antibody Technique , Humans , Panama/epidemiology , Prevalence , Real-Time Polymerase Chain Reaction , Zika Virus Infection/epidemiologyABSTRACT
The genus Alphavirus harbours mostly insect-transmitted viruses that cause severe disease in humans, livestock and wildlife. Thus far, only three alphaviruses with a host range restricted to insects have been found in mosquitoes from the Old World, namely Eilat virus (EILV), Taï Forest alphavirus (TALV) and Mwinilunga alphavirus (MWAV). In this study, we found a novel alphavirus in one Culex declarator mosquito sampled in Panama. The virus was isolated in C6/36 mosquito cells, and full genome sequencing revealed an 11â468 nt long genome with maximum pairwise nucleotide identity of 62.7â% to Sindbis virus. Phylogenetic analyses placed the virus as a solitary deep rooting lineage in a basal relationship to the Western equine encephalitis antigenic complex and to the clade comprising EILV, TALV and MWAV, indicating the detection of a novel alphavirus, tentatively named Agua Salud alphavirus (ASALV). No growth of ASALV was detected in vertebrate cell lines, including cell lines derived from ectothermic animals, and replication of ASALV was strongly impaired above 31 °C, suggesting that ASALV represents the first insect-restricted alphavirus of the New World.
Subject(s)
Alphavirus/genetics , Culicidae/virology , Host Specificity/genetics , Insect Viruses/genetics , Animals , Cell Line , Panama , Phylogeny , RNA, Viral/genetics , Vertebrates/virology , Virus Replication/geneticsABSTRACT
As the threat of arboviral diseases continues to escalate worldwide, the question of, "What types of human communities are at the greatest risk of infection?" persists as a key gap in the existing knowledge of arboviral diseases transmission dynamics. Here, we comprehensively review the existing literature on the socioeconomic drivers of the most common Aedes mosquito-borne diseases and Aedes mosquito presence/abundance. We reviewed a total of 182 studies on dengue viruses (DENV), chikungunya virus (CHIKV), yellow fever virus (YFVV), Zika virus (ZIKV), and presence of Aedes mosquito vectors. In general, associations between socioeconomic conditions and both Aedes-borne diseases and Aedes mosquitoes are highly variable and often location-specific. Although 50% to 60% of studies found greater presence or prevalence of disease or vectors in areas with lower socioeconomic status, approximately half of the remaining studies found either positive or null associations. We discuss the possible causes of this lack of conclusiveness as well as the implications it holds for future research and prevention efforts.
ABSTRACT
ABSTRACT The Republic of Panama has the second most unequally distributed wealth in Central America, has recently entered the list of countries affected by the COVID-19 pandemic, and has one of the largest testing rate per inhabitant in the region and consequently the highest incidence rate of COVID-19, making it an ideal location to discuss potential scenarios for assessing epidemic preparedness, and to outline research opportunities in the Region of the Americas. We address two timely important questions: What are the unique risks of COVID-19 in Panama that could help other countries in the Region be better prepared? And what kind of scientific knowledge can Panama contribute to the regional and global study of COVID-19? This paper provides suggestions about how the research community could support local health authorities plan for different scenarios and decrease public anxiety. It also presents basic scientific opportunities about emerging pandemic pathogens towards promoting global health from the perspective of a middle income country.(AU)
RESUMEN La República de Panamá es el segundo país de Centroamérica con la distribución más desigual de la riqueza, ha resultado afectado recientemente por la pandemia de COVID-19 y tiene una de las mayores tasas de pruebas diagnósticas por habitante de la región y, por consiguiente, la mayor tasa de incidencia de COVID-19. Estos aspectos la convierten en un lugar ideal para examinar posibles escenarios de evaluación de la preparación para la epidemia y para plantear oportunidades de investigación en la Región de las Américas. Se abordan dos preguntas importantes y oportunas: ¿Cuáles son los riesgos singulares de la COVID-19 en Panamá que podrían ayudar a otros países de la Región a estar mejor preparados? y ¿Qué tipo de conocimiento científico puede aportar Panamá al estudio regional y mundial de la COVID-19? En este artículo se presentan sugerencias sobre la forma en que la comunidad de investigadores podría apoyar a las autoridades sanitarias locales a planificar medidas ante diferentes escenarios y disminuir la ansiedad de la población. También se presentan oportunidades científicas básicas sobre patógenos pandémicos emergentes para promover la salud mundial desde la perspectiva de un país de ingresos medios.(AU)
Subject(s)
Humans , Socioeconomic Factors , Disease Outbreaks , Coronavirus Infections/epidemiology , Pandemics/prevention & control , Panama/epidemiology , Latin America/epidemiologyABSTRACT
Spatial isolation is one of the main drivers of allopatric speciation, but the extent to which spatially-segregated populations accumulate genetic differences relevant to speciation is not always clear. We used data from ultraconserved elements (UCEs) and whole mitochondrial genomes (i.e., mitogenomes) to explore genetic variation among allopatric populations of the weakly electric fish Sternopygus dariensis across the Isthmus of Panama. We found strong genetic divergence between eastern and western populations of S. dariensis. Over 77% of the UCE loci examined were differentially fixed between populations, and these loci appear to be distributed across the species' genome. Population divergence occurred within the last 1.1 million years, perhaps due to global glaciation oscillations during the Pleistocene. Our results are consistent with a pattern of genetic differentiation under strict geographic isolation, and suggest the presence of incipient allopatric species within S. dariensis. Genetic divergence in S. dariensis likely occurred in situ, long after the closure of the Isthmus of Panama. Our study highlights the contribution of spatial isolation and vicariance to promoting rapid diversification in Neotropical freshwater fishes. The study of spatially-segregated populations within the Isthmus of Panama could reveal how genetic differences accumulate as allopatric speciation proceeds.
Subject(s)
Genetic Speciation , Genome, Mitochondrial , Gymnotiformes/genetics , Phylogeny , Animals , DNA, Mitochondrial , Evolution, Molecular , Sequence Analysis, DNAABSTRACT
Long term surveillance of vectors and arboviruses is an integral aspect of disease prevention and control systems in countries affected by increasing risk. Yet, little effort has been made to adjust space-time risk estimation by integrating disease case counts with vector surveillance data, which may result in inaccurate risk projection when several vector species are present, and when little is known about their likely role in local transmission. Here, we integrate 13 years of dengue case surveillance and associated Aedes occurrence data across 462 localities in 63 districts to estimate the risk of infection in the Republic of Panama. Our exploratory space-time modelling approach detected the presence of five clusters, which varied by duration, relative risk, and spatial extent after incorporating vector species as covariates. The Ae. aegypti model contained the highest number of districts with more dengue cases than would be expected given baseline population levels, followed by the model accounting for both Ae. aegypti and Ae. albopictus. This implies that arbovirus case surveillance coupled with entomological surveillance can affect cluster detection and risk estimation, potentially improving efforts to understand outbreak dynamics at national scales.
Subject(s)
Aedes/physiology , Dengue Virus/physiology , Dengue/epidemiology , Mosquito Vectors/physiology , Aedes/classification , Aedes/virology , Animals , Dengue/transmission , Dengue/virology , Dengue Virus/genetics , Dengue Virus/isolation & purification , Environmental Monitoring , Epidemiological Monitoring , Humans , Mosquito Vectors/classification , Mosquito Vectors/virology , Panama/epidemiologyABSTRACT
Aedes aegypti and Aedes albopictus develop in the same aquatic sites where they encounter microorganisms that influence their life history and capacity to transmit human arboviruses. Some bacteria such as Wolbachia are currently being considered for the control of Dengue, Chikungunya and Zika. Yet little is known about the dynamics and diversity of Aedes-associated bacteria, including larval habitat features that shape their tempo-spatial distribution. We applied large-scale 16S rRNA amplicon sequencing to 960 adults and larvae of both Ae. aegypti and Ae. albopictus mosquitoes from 59 sampling sites widely distributed across nine provinces of Panama. We find both species share a limited, yet highly variable core microbiota, reflecting high stochasticity within their oviposition habitats. Despite sharing a large proportion of microbiota, Ae. aegypti harbours higher bacterial diversity than Ae. albopictus, primarily due to rarer bacterial groups at the larval stage. We find significant differences between the bacterial communities of larvae and adult mosquitoes, and among samples from metal and ceramic containers. However, we find little support for geography, water temperature and pH as predictors of bacterial associates. We report a low incidence of natural Wolbachia infection for both Aedes and its geographical distribution. This baseline information provides a foundation for studies on the functions and interactions of Aedes-associated bacteria with consequences for bio-control within Panama.
Subject(s)
Aedes/microbiology , Bacteria/growth & development , Microbiota , Aedes/growth & development , Animals , Bacteria/genetics , Disease Vectors , Ecosystem , Hydrogen-Ion Concentration , Larva/microbiology , Panama , Principal Component Analysis , RNA, Ribosomal, 16S/chemistry , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/metabolism , Sequence Analysis, DNA , Temperature , Water/chemistry , Wolbachia/genetics , Wolbachia/growth & developmentABSTRACT
Six Phlebotominae sand fly species are incriminated as biological vectors of human pathogens in Panama, but molecular corroboration is still needed. We aim at confirming the identity of Phlebotominae species documented as anthropophilic in Panama. Adult sandflies were collected from August 2010 to February 2012 in Central Panama using CDC light traps. Species confirmation was accomplished through molecular barcodes and allied sequences from GenBank. A total of 53,366 sand fly specimens representing 18 species were collected. Five species were validated molecularly as single phylogenetic clusters, but Psychodopygus thula depicted two genetically divergent lineages, which may be indicative of cryptic speciation.
Subject(s)
Biodiversity , Insect Vectors/genetics , Psychodidae/genetics , Animals , Insect Vectors/classification , Leishmaniasis, Cutaneous/transmission , Panama , Phylogeny , Psychodidae/classificationABSTRACT
BACKGROUND: The long-distance dispersal of the invasive disease vectors Aedes aegypti and Aedes albopictus has introduced arthropod-borne viruses into new geographical regions, causing a significant medical and economic burden. The used-tire industry is an effective means of Aedes dispersal, yet studies to determine Aedes occurrence and the factors influencing their distribution along local transport networks are lacking. To assess infestation along the primary transport network of Panama we documented all existing garages that trade used tires on the highway and surveyed a subset for Ae. aegypti and Ae. albopictus. We also assess the ability of a mass spectrometry approach to classify mosquito eggs by comparing our findings to those based on traditional larval surveillance. RESULTS: Both Aedes species had a high infestation rate in garages trading used tires along the highways, providing a conduit for rapid dispersal across Panama. However, generalized linear models revealed that the presence of Ae. aegypti is associated with an increase in road density by a log-odds of 0.44 (0.73 ± 0.16; P = 0.002), while the presence of Ae. albopictus is associated with a decrease in road density by a log-odds of 0.36 (0.09 ± 0.63; P = 0.008). Identification of mosquito eggs by mass spectrometry depicted similar occurrence patterns for both Aedes species as that obtained with traditional rearing methods. CONCLUSIONS: Garages trading used tires along highways should be targeted for the surveillance and control of Aedes-mosquitoes and the diseases they transmit. The identification of mosquito eggs using mass spectrometry allows for the rapid evaluation of Aedes presence, affording time and cost advantages over traditional vector surveillance; this is of importance for disease risk assessment.