Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1342512, 2024.
Article in English | MEDLINE | ID: mdl-38708395

ABSTRACT

Carrot (Daucus carota L.) is a high value, nutritious, and colorful crop, but delivering carrots from seed to table can be a struggle for carrot growers. Weed competitive ability is a critical trait for crop success that carrot and its apiaceous relatives often lack owing to their characteristic slow shoot growth and erratic seedling emergence, even among genetically uniform lines. This study is the first field-based, multi-year experiment to evaluate shoot-growth trait variation over a 100-day growing season in a carrot diversity panel (N=695) that includes genetically diverse carrot accessions from the United States Department of Agriculture National Plant Germplasm System. We report phenotypic variability for shoot-growth characteristics, the first broad-sense heritability estimates for seedling emergence (0.68 < H2 < 0.80) and early-season canopy coverage ( 0.61 < H2 < 0.65), and consistent broad-sense heritability for late-season canopy height (0.76 < H2 < 0.82), indicating quantitative inheritance and potential for improvement through plant breeding. Strong correlation between emergence and canopy coverage (0.62 < r < 0.72) suggests that improvement of seedling emergence has great potential to increase yield and weed competitive ability. Accessions with high emergence and vigorous canopy growth are of immediate use to breeders targeting stand establishment, weed-tolerance, or weed-suppressant carrots, which is of particular advantage to the organic carrot production sector, reducing the costs and labor associated with herbicide application and weeding. We developed a standardized vocabulary and protocol to describe shoot-growth and facilitate collaboration and communication across carrot research groups. Our study facilitates identification and utilization of carrot genetic resources, conservation of agrobiodiversity, and development of breeding stocks for weed-competitive ability, with the long-term goal of delivering improved carrot cultivars to breeders, growers, and consumers. Accession selection can be further optimized for efficient breeding by combining shoot growth data with phenological data in this study's companion paper to identify ideotypes based on global market needs.

2.
Front Plant Sci ; 15: 1342513, 2024.
Article in English | MEDLINE | ID: mdl-38779064

ABSTRACT

Biennial vegetable crops are challenging to breed due to long breeding cycle times. At the same time, it is important to preserve a strong biennial growth habit, avoiding premature flowering that renders the crop unmarketable. Gene banks carry important genetic variation which may be essential to improve crop resilience, but these collections are underutilized due to lack of characterization for key traits like bolting tendency for biennial vegetable crops. Due to concerns about introducing undesirable traits such as premature flowering into elite germplasm, many accessions may not be considered for other key traits that benefit growers, leaving crops more vulnerable to pests, diseases, and abiotic stresses. In this study, we develop a method for characterizing flowering to identify accessions that are predominantly biennial, which could be incorporated into biennial breeding programs without substantially increasing the risk of annual growth habits. This should increase the use of these accessions if they are also sources of other important traits such as disease resistance. We developed the CarrotOmics flowering habit trait ontology and evaluated flowering habit in the largest (N=695), and most diverse collection of cultivated carrots studied to date. Over 80% of accessions were collected from the Eurasian supercontinent, which includes the primary and secondary centers of carrot diversity. We successfully identified untapped genetic diversity in biennial carrot germplasm (n=197 with 0% plants flowering) and predominantly-biennial germplasm (n=357 with <15% plants flowering). High broad-sense heritability for flowering habit (0.81 < H2< 0.93) indicates a strong genetic component of this trait, suggesting that these carrot accessions should be consistently biennial. Breeders can select biennial plants and eliminate annual plants from a predominantly biennial population. The establishment of the predominantly biennial subcategory nearly doubles the availability of germplasm with commercial potential and accounts for 54% of the germplasm collection we evaluated. This subcollection is a useful source of genetic diversity for breeders. This method could also be applied to other biennial vegetable genetic resources and to introduce higher levels of genetic diversity into commercial cultivars, to reduce crop genetic vulnerability. We encourage breeders and researchers of biennial crops to optimize this strategy for their particular crop.

SELECTION OF CITATIONS
SEARCH DETAIL
...