Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
2.
Cell Rep ; 43(6): 114325, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38870014

ABSTRACT

The sensitivity of malignant tissues to T cell-based immunotherapies depends on the presence of targetable human leukocyte antigen (HLA) class I ligands. Peptide-intrinsic factors, such as HLA class I affinity and proteasomal processing, have been established as determinants of HLA ligand presentation. However, the role of gene and protein sequence features as determinants of epitope presentation has not been systematically evaluated. We perform HLA ligandome mass spectrometry to evaluate the contribution of 7,135 gene and protein sequence features to HLA sampling. This analysis reveals that a number of predicted modifiers of mRNA and protein abundance and turnover, including predicted mRNA methylation and protein ubiquitination sites, inform on the presence of HLA ligands. Importantly, integration of such "hard-coded" sequence features into a machine learning approach augments HLA ligand predictions to a comparable degree as experimental measures of gene expression. Our study highlights the value of gene and protein features for HLA ligand predictions.


Subject(s)
Histocompatibility Antigens Class I , Humans , Ligands , Histocompatibility Antigens Class I/metabolism , Histocompatibility Antigens Class I/genetics , RNA, Messenger/metabolism , RNA, Messenger/genetics , Amino Acid Sequence , Machine Learning , Peptides/metabolism , Peptides/chemistry
3.
Nat Commun ; 14(1): 6731, 2023 10 23.
Article in English | MEDLINE | ID: mdl-37872136

ABSTRACT

Immunotherapies targeting cancer-specific neoantigens have revolutionized the treatment of cancer patients. Recent evidence suggests that epigenetic therapies synergize with immunotherapies, mediated by the de-repression of endogenous retroviral element (ERV)-encoded promoters, and the initiation of transcription. Here, we use deep RNA sequencing from cancer cell lines treated with DNA methyltransferase inhibitor (DNMTi) and/or Histone deacetylase inhibitor (HDACi), to assemble a de novo transcriptome and identify several thousand ERV-derived, treatment-induced novel polyadenylated transcripts (TINPATs). Using immunopeptidomics, we demonstrate the human leukocyte antigen (HLA) presentation of 45 spectra-validated treatment-induced neopeptides (t-neopeptides) arising from TINPATs. We illustrate the potential of the identified t-neopeptides to elicit a T-cell response to effectively target cancer cells. We further verify the presence of t-neopeptides in AML patient samples after in vivo treatment with the DNMT inhibitor Decitabine. Our findings highlight the potential of ERV-derived neoantigens in epigenetic and immune therapies.


Subject(s)
Endogenous Retroviruses , Neoplasms , Humans , Endogenous Retroviruses/genetics , Histone Deacetylase Inhibitors/pharmacology , T-Lymphocytes , Histocompatibility Antigens Class I
4.
Cancer Res ; 83(15): 2448-2449, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37470809

ABSTRACT

Cancer cell survival is highly dependent on its metabolic reprogramming, which supports not only cell growth but also confers to the tumor cells characteristics to initiate migration and colonization. Among the different mechanisms that are involved, translational control plays a significant role in oncogenesis; however, its impact on cancer progression still remains poorly understood. A study by Navickas and colleagues revealed that the RNA-binding protein heterogeneous nuclear ribonucleoprotein C (HNRNPC) functions as a translational regulator, and its downregulation in highly metastatic cells leads to the lengthening of 3' untranslated regions in HNRNPC-bound mRNAs, resulting in translational repression mediated by the AGO-miRNA RNA-induced silencing complex.

5.
Cell Rep Med ; 4(2): 100941, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36812891

ABSTRACT

By restoring tryptophan, indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors aim to reactivate anti-tumor T cells. However, a phase III trial assessing their clinical benefit failed, prompting us to revisit the role of IDO1 in tumor cells under T cell attack. We show here that IDO1 inhibition leads to an adverse protection of melanoma cells to T cell-derived interferon-gamma (IFNγ). RNA sequencing and ribosome profiling shows that IFNγ shuts down general protein translation, which is reversed by IDO1 inhibition. Impaired translation is accompanied by an amino acid deprivation-dependent stress response driving activating transcription factor-4 (ATF4)high/microphtalmia-associated transcription factor (MITF)low transcriptomic signatures, also in patient melanomas. Single-cell sequencing analysis reveals that MITF downregulation upon immune checkpoint blockade treatment predicts improved patient outcome. Conversely, MITF restoration in cultured melanoma cells causes T cell resistance. These results highlight the critical role of tryptophan and MITF in the melanoma response to T cell-derived IFNγ and uncover an unexpected negative consequence of IDO1 inhibition.


Subject(s)
Melanoma , Tryptophan , Humans , Melanoma/pathology , Interferon-gamma/metabolism , T-Lymphocytes/metabolism , Indoleamine-Pyrrole 2,3,-Dioxygenase/genetics
7.
Mol Cell ; 82(20): 3840-3855.e8, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36270248

ABSTRACT

The use of alternative promoters, splicing, and cleavage and polyadenylation (APA) generates mRNA isoforms that expand the diversity and complexity of the transcriptome. Here, we uncovered thousands of previously undescribed 5' uncapped and polyadenylated transcripts (5' UPTs). We show that these transcripts resist exonucleases due to a highly structured RNA and N6-methyladenosine modification at their 5' termini. 5' UPTs appear downstream of APA sites within their host genes and are induced upon APA activation. Strong enrichment in polysomal RNA fractions indicates 5' UPT translational potential. Indeed, APA promotes downstream translation initiation, non-canonical protein output, and consistent changes to peptide presentation at the cell surface. Lastly, we demonstrate the biological importance of 5' UPTs using Bcl2, a prominent anti-apoptotic gene whose entire coding sequence is a 5' UPT generated from 5' UTR-embedded APA sites. Thus, APA is not only accountable for terminating transcripts, but also for generating downstream uncapped RNAs with translation potential and biological impact.


Subject(s)
Polyadenylation , RNA Isoforms , RNA Isoforms/genetics , 5' Untranslated Regions , 3' Untranslated Regions/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Exonucleases/genetics
9.
Nat Metab ; 4(6): 693-710, 2022 06.
Article in English | MEDLINE | ID: mdl-35760868

ABSTRACT

Elevated production of collagen-rich extracellular matrix is a hallmark of cancer-associated fibroblasts (CAFs) and a central driver of cancer aggressiveness. Here we find that proline, a highly abundant amino acid in collagen proteins, is newly synthesized from glutamine in CAFs to make tumour collagen in breast cancer xenografts. PYCR1 is a key enzyme for proline synthesis and highly expressed in the stroma of breast cancer patients and in CAFs. Reducing PYCR1 levels in CAFs is sufficient to reduce tumour collagen production, tumour growth and metastatic spread in vivo and cancer cell proliferation in vitro. Both collagen and glutamine-derived proline synthesis in CAFs are epigenetically upregulated by increased pyruvate dehydrogenase-derived acetyl-CoA levels. PYCR1 is a cancer cell vulnerability and potential target for therapy; therefore, our work provides evidence that targeting PYCR1 may have the additional benefit of halting the production of a pro-tumorigenic extracellular matrix. Our work unveils new roles for CAF metabolism to support pro-tumorigenic collagen production.


Subject(s)
Breast Neoplasms , Cancer-Associated Fibroblasts , Pyrroline Carboxylate Reductases/metabolism , Breast Neoplasms/metabolism , Cancer-Associated Fibroblasts/metabolism , Cancer-Associated Fibroblasts/pathology , Carcinogenesis/metabolism , Carcinogenesis/pathology , Collagen/metabolism , Extracellular Matrix/metabolism , Female , Glutamine/metabolism , Humans , Proline , delta-1-Pyrroline-5-Carboxylate Reductase
10.
Mol Syst Biol ; 16(9): e9443, 2020 09.
Article in English | MEDLINE | ID: mdl-32960509

ABSTRACT

Tumor relapse as a consequence of chemotherapy resistance is a major clinical challenge in advanced stage breast tumors. To identify processes associated with poor clinical outcome, we took a mass spectrometry-based proteomic approach and analyzed a breast cancer cohort of 113 formalin-fixed paraffin-embedded samples. Proteomic profiling of matched tumors before and after chemotherapy, and tumor-adjacent normal tissue, all from the same patients, allowed us to define eight patterns of protein level changes, two of which correlate to better chemotherapy response. Supervised analysis identified two proteins of proline biosynthesis pathway, PYCR1 and ALDH18A1, that were significantly associated with resistance to treatment based on pattern dominance. Weighted gene correlation network analysis of post-treatment samples revealed that these proteins are associated with tumor relapse and affect patient survival. Functional analysis showed that knockdown of PYCR1 reduced invasion and migration capabilities of breast cancer cell lines. PYCR1 knockout significantly reduced tumor burden and increased drug sensitivity of orthotopically injected ER-positive tumor in vivo, thus emphasizing the role of PYCR1 in resistance to chemotherapy.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/therapy , Neoadjuvant Therapy , Proteomics , Breast Neoplasms/pathology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Proliferation , Citric Acid Cycle , Female , Gene Regulatory Networks , Humans , Neoplasm Invasiveness , Neoplasm Proteins/metabolism , Prognosis , Protein Interaction Maps , Pyrroline Carboxylate Reductases/metabolism , Recurrence , Survival Analysis , delta-1-Pyrroline-5-Carboxylate Reductase
11.
Bioorg Med Chem Lett ; 29(18): 2626-2631, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31362921

ABSTRACT

Pyrroline-5-carboxylate reductase 1 (PYCR1) is the final enzyme involved in the biosynthesis of proline and has been found to be upregulated in various forms of cancer. Due to the role of proline in maintaining the redox balance of cells and preventing apoptosis, PYCR1 is emerging as an attractive oncology target. Previous PYCR1 knockout studies led to a reduction in tumor growth. Accordingly, a small molecule inhibitor of PYCR1 could lead to new treatments for cancer, and a focused screening effort identified pargyline as a fragment-like hit. We report the design and synthesis of the first tool compounds as PYCR1 inhibitors, derived from pargyline, which were assayed to assess their ability to attenuate the production of proline. Structural activity studies have revealed the key determinants of activity, with the most potent compound (4) showing improved activity in vitro in enzyme (IC50 = 8.8 µM) and pathway relevant effects in cell-based assays.


Subject(s)
Antineoplastic Agents/pharmacology , Enzyme Inhibitors/pharmacology , Pargyline/pharmacology , Pyrroline Carboxylate Reductases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Humans , Molecular Structure , Pargyline/chemical synthesis , Pargyline/chemistry , Pyrroline Carboxylate Reductases/metabolism , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship , delta-1-Pyrroline-5-Carboxylate Reductase
12.
Nat Commun ; 10(1): 2542, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186416

ABSTRACT

Somatic ribosomal protein mutations have recently been described in cancer, yet their impact on cellular transcription and translation remains poorly understood. Here, we integrate mRNA sequencing, ribosome footprinting, polysomal RNA sequencing and mass spectrometry datasets from a mouse lymphoid cell model to characterize the T-cell acute lymphoblastic leukemia (T-ALL) associated ribosomal RPL10 R98S mutation. Surprisingly, RPL10 R98S induces changes in protein levels primarily through transcriptional rather than translation efficiency changes. Phosphoserine phosphatase (PSPH), encoding a key serine biosynthesis enzyme, was the only gene with elevated transcription and translation leading to protein overexpression. PSPH upregulation is a general phenomenon in T-ALL patient samples, associated with elevated serine and glycine levels in xenograft mice. Reduction of PSPH expression suppresses proliferation of T-ALL cell lines and their capacity to expand in mice. We identify ribosomal mutation driven induction of serine biosynthesis and provide evidence supporting dependence of T-ALL cells on PSPH.


Subject(s)
Glycine/metabolism , Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Serine/metabolism , Animals , Cell Line , Gene Expression Profiling , Mice , Phosphoric Monoester Hydrolases , Polyribosomes/genetics , Polyribosomes/metabolism , Protein Biosynthesis , RNA, Messenger/genetics , Ribosomal Protein L10 , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism , Ribosomes/metabolism , Sequence Analysis, RNA
13.
Nat Commun ; 9(1): 863, 2018 02 28.
Article in English | MEDLINE | ID: mdl-29491406

ABSTRACT

CD103+ dendritic cells (DC) are crucial for regulation of intestinal tolerance in humans. However, upon infection of the lamina propria this tolerogenic response is converted to an inflammatory response. Here we show that immunoglobulin A (IgA) immune complexes (IgA-IC), which are present after bacterial infection of the lamina propria, are important for the induction of inflammation by the human CD103+SIRPα+ DC subset. IgA-IC, by recognition through FcαRI, selectively amplify the production of proinflammatory cytokines TNF, IL-1ß and IL-23 by human CD103+ DCs. These cells then enhance inflammation by promoting Th17 responses and activating human intestinal innate lymphoid cells 3. Moreover, FcαRI-induced cytokine production is orchestrated via upregulation of cytokine translation and caspase-1 activation, which is dependent on glycolytic reprogramming mediated by kinases Syk, PI3K and TBK1-IKKε. Our data suggest that the formation of IgA-IC in the human intestine provides an environmental cue for the conversion of a tolerogenic to an inflammatory response.


Subject(s)
Antigens, CD/immunology , Dendritic Cells/immunology , Integrin alpha Chains/immunology , Intestines/immunology , Receptors, Fc/immunology , Cellular Reprogramming , Glycolysis , Humans , Immunoglobulin A/immunology , Interleukin-1beta/immunology , Interleukin-23/immunology , Intestines/cytology , Th17 Cells/immunology
14.
Nucleic Acids Res ; 46(8): 4213-4227, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29481642

ABSTRACT

Oncogene-induced senescence (OIS), provoked in response to oncogenic activation, is considered an important tumor suppressor mechanism. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt without a protein-coding capacity. Functional studies showed that deregulated lncRNA expression promote tumorigenesis and metastasis and that lncRNAs may exhibit tumor-suppressive and oncogenic function. Here, we first identified lncRNAs that were differentially expressed between senescent and non-senescent human fibroblast cells. Using RNA interference, we performed a loss-function screen targeting the differentially expressed lncRNAs, and identified lncRNA-OIS1 (lncRNA#32, AC008063.3 or ENSG00000233397) as a lncRNA required for OIS. Knockdown of lncRNA-OIS1 triggered bypass of senescence, higher proliferation rate, lower abundance of the cell-cycle inhibitor CDKN1A and high expression of cell-cycle-associated genes. Subcellular inspection of lncRNA-OIS1 indicated nuclear and cytosolic localization in both normal culture conditions as well as following oncogene induction. Interestingly, silencing lncRNA-OIS1 diminished the senescent-associated induction of a nearby gene (Dipeptidyl Peptidase 4, DPP4) with established role in tumor suppression. Intriguingly, similar to lncRNA-OIS1, silencing DPP4 caused senescence bypass, and ectopic expression of DPP4 in lncRNA-OIS1 knockdown cells restored the senescent phenotype. Thus, our data indicate that lncRNA-OIS1 links oncogenic induction and senescence with the activation of the tumor suppressor DPP4.


Subject(s)
Cellular Senescence/genetics , Dipeptidyl Peptidase 4/genetics , RNA, Long Noncoding/metabolism , Dipeptidyl Peptidase 4/metabolism , Gene Expression , Genes, ras , Genome , HEK293 Cells , Humans , Neoplasms/genetics , Neoplasms/metabolism
15.
Cell ; 169(2): 326-337.e12, 2017 04 06.
Article in English | MEDLINE | ID: mdl-28388414

ABSTRACT

Transcription and translation are two main pillars of gene expression. Due to the different timings, spots of action, and mechanisms of regulation, these processes are mainly regarded as distinct and generally uncoupled, despite serving a common purpose. Here, we sought for a possible connection between transcription and translation. Employing an unbiased screen of multiple human promoters, we identified a positive effect of TATA box on translation and a general coupling between mRNA expression and translational efficiency. Using a CRISPR-Cas9-mediated approach, genome-wide analyses, and in vitro experiments, we show that the rate of transcription regulates the efficiency of translation. Furthermore, we demonstrate that m6A modification of mRNAs is co-transcriptional and depends upon the dynamics of the transcribing RNAPII. Suboptimal transcription rates lead to elevated m6A content, which may result in reduced translation. This study uncovers a general and widespread link between transcription and translation that is governed by epigenetic modification of mRNAs.


Subject(s)
Adenosine/analogs & derivatives , Gene Expression Regulation , Protein Biosynthesis , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Transcription, Genetic , Adenosine/metabolism , Humans , Methylation , Peptide Chain Initiation, Translational , RNA Polymerase II/metabolism , TATA Box
16.
EMBO Rep ; 18(4): 549-557, 2017 04.
Article in English | MEDLINE | ID: mdl-28274951

ABSTRACT

Cancer cells modulate their metabolic networks to support cell proliferation and a higher demand of building blocks. These changes may restrict the availability of certain amino acids for protein synthesis, which can be utilized for cancer therapy. However, little is known about the amino acid demand changes occurring during aggressive and invasive stages of cancer. Recently, we developed diricore, an approach based on ribosome profiling that can uncover amino acid limitations. Here, we applied diricore to a cellular model in which epithelial breast cells respond rapidly to TGFß1, a cytokine essential for cancer progression and metastasis, and uncovered shortage of leucine. Further analyses indicated that TGFß1 treatment of human breast epithelial cells reduces the expression of SLC3A2, a subunit of the leucine transporter, which diminishes leucine uptake and inhibits cell proliferation. Thus, we identified a specific amino acid limitation associated with the TGFß1 response, a vulnerability that might be associated with aggressiveness in cancer.


Subject(s)
Codon , Leucine/genetics , Leucine/metabolism , Protein Biosynthesis , Ribosomes/metabolism , Transforming Growth Factor beta1/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Female , Fusion Regulatory Protein 1, Heavy Chain/genetics , Fusion Regulatory Protein 1, Heavy Chain/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Protein Biosynthesis/drug effects , Signal Transduction , Transforming Growth Factor beta1/pharmacology
17.
Wellcome Open Res ; 2: 116, 2017.
Article in English | MEDLINE | ID: mdl-29387808

ABSTRACT

Background: Gene expression in human mitochondria has various idiosyncratic features. One of these was recently revealed as the unprecedented recruitment of a mitochondrially-encoded tRNA as a structural component of the large mitoribosomal subunit. In porcine particles this is mt-tRNA Phe whilst in humans it is mt-tRNA Val. We have previously shown that when a mutation in mt-tRNA Val causes very low steady state levels, there is preferential recruitment of mt-tRNA Phe. We have investigated whether this altered mitoribosome affects intra-organellar protein synthesis. Methods: By using mitoribosomal profiling we have revealed aspects of mitoribosome behaviour with its template mt-mRNA under both normal conditions as well as those where the mitoribosome has incorporated mt-tRNA Phe. Results: Analysis of the mitoribosome residency on transcripts under control conditions reveals that although mitochondria employ only 22 mt-tRNAs for protein synthesis, the use of non-canonical wobble base pairs at codon position 3 does not cause any measurable difference in mitoribosome occupancy irrespective of the codon. Comparison of the profile of aberrant mt-tRNA Phe containing mitoribosomes with those of controls that integrate mt-tRNA Val revealed that the impaired translation seen in the latter was not due to stalling on triplets encoding either of these amino acids. The alterations in mitoribosome interactions with start codons was not directly attributable to the either the use of non-cognate initiation codons or the presence or absence of 5' leader sequences, except in the two bicistronic RNA units, RNA7 and RNA14 where the initiation sites are internal. Conclusions: These data report the power of mitoribosomal profiling in helping to understand the subtleties of mammalian mitochondrial protein synthesis. Analysis of profiles from the mutant mt-tRNA Val cell line suggest that despite mt-tRNA Phe being preferred in the porcine mitoribosome, its integration into the human counterpart results in a suboptimal structure that modifies its interaction with mt-mRNAs.

18.
J Clin Invest ; 126(8): 2903-18, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27454287

ABSTRACT

Heterozygous germline mutations in breast cancer 1 (BRCA1) strongly predispose women to breast cancer. BRCA1 plays an important role in DNA double-strand break (DSB) repair via homologous recombination (HR), which is important for tumor suppression. Although BRCA1-deficient cells are highly sensitive to treatment with DSB-inducing agents through their HR deficiency (HRD), BRCA1-associated tumors display heterogeneous responses to platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors in clinical trials. It is unclear whether all pathogenic BRCA1 mutations have similar effects on the response to therapy. Here, we have investigated mammary tumorigenesis and therapy sensitivity in mice carrying the Brca1185stop and Brca15382stop alleles, which respectively mimic the 2 most common BRCA1 founder mutations, BRCA1185delAG and BRCA15382insC. Both the Brca1185stop and Brca15382stop mutations predisposed animals to mammary tumors, but Brca1185stop tumors responded markedly worse to HRD-targeted therapy than did Brca15382stop tumors. Mice expressing Brca1185stop mutations also developed therapy resistance more rapidly than did mice expressing Brca15382stop. We determined that both murine Brca1185stop tumors and human BRCA1185delAG breast cancer cells expressed a really interesting new gene domain-less (RING-less) BRCA1 protein that mediated resistance to HRD-targeted therapies. Together, these results suggest that expression of RING-less BRCA1 may serve as a marker to predict poor response to DSB-inducing therapy in human cancer patients.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Drug Resistance, Neoplasm , Gene Deletion , Mammary Neoplasms, Animal/genetics , Alleles , Animals , Antineoplastic Agents/pharmacology , Cisplatin/pharmacology , Crosses, Genetic , DNA Damage , Drug Screening Assays, Antitumor , Female , Founder Effect , Frameshift Mutation , Genetic Engineering , Humans , Male , Mammary Neoplasms, Animal/drug therapy , Mice , Mutation , Neoplasm Transplantation , Phthalazines/pharmacology , Piperazines/pharmacology , Poly(ADP-ribose) Polymerases/metabolism , Recombination, Genetic
19.
Cell Cycle ; 15(17): 2229-30, 2016 09.
Article in English | MEDLINE | ID: mdl-27245302

Subject(s)
Neoplasms , Amino Acids , Humans
20.
Nature ; 530(7591): 490-4, 2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26878238

ABSTRACT

Tumour growth and metabolic adaptation may restrict the availability of certain amino acids for protein synthesis. It has recently been shown that certain types of cancer cells depend on glycine, glutamine, leucine and serine metabolism to proliferate and survive. In addition, successful therapies using L-asparaginase-induced asparagine deprivation have been developed for acute lymphoblastic leukaemia. However, a tailored detection system for measuring restrictive amino acids in each tumour is currently not available. Here we harness ribosome profiling for sensing restrictive amino acids, and develop diricore, a procedure for differential ribosome measurements of codon reading. We first demonstrate the functionality and constraints of diricore using metabolic inhibitors and nutrient deprivation assays. Notably, treatment with L-asparaginase elicited both specific diricore signals at asparagine codons and high levels of asparagine synthetase (ASNS). We then applied diricore to kidney cancer and discover signals indicating restrictive proline. As for asparagine, this observation was linked to high levels of PYCR1, a key enzyme in proline production, suggesting a compensatory mechanism allowing tumour expansion. Indeed, PYCR1 is induced by shortage of proline precursors, and its suppression attenuated kidney cancer cell proliferation when proline was limiting. High PYCR1 is frequently observed in invasive breast carcinoma. In an in vivo model system of this tumour, we also uncover signals indicating restrictive proline. We further show that CRISPR-mediated knockout of PYCR1 impedes tumorigenic growth in this system. Thus, diricore has the potential to reveal unknown amino acid deficiencies, vulnerabilities that can be used to target key metabolic pathways for cancer treatment.


Subject(s)
Breast Neoplasms/metabolism , Codon/genetics , Kidney Neoplasms/metabolism , Proline/metabolism , Protein Biosynthesis , Ribosomes/metabolism , Animals , Asparaginase/metabolism , Asparagine/genetics , Asparagine/metabolism , Aspartate-Ammonia Ligase/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/pathology , Cell Line, Tumor , Cell Proliferation , Female , Gene Knockout Techniques , Humans , Kidney Neoplasms/pathology , Mice , Proline/biosynthesis , Proline/deficiency , Protein Biosynthesis/genetics , Pyrroline Carboxylate Reductases/deficiency , Pyrroline Carboxylate Reductases/genetics , Pyrroline Carboxylate Reductases/metabolism , delta-1-Pyrroline-5-Carboxylate Reductase
SELECTION OF CITATIONS
SEARCH DETAIL
...