Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(41): 9357-9364, 2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37820389

ABSTRACT

We study structural and morphological transformations caused by multipulse femtosecond-laser exposure of Bridgman-grown ϵ-phase GaSe crystals, a van der Waals semiconductor promising for nonlinear optics and optoelectronics. We unveil, for the first time, the laser-driven self-organization regimes in GaSe allowing the formation of regular laser-induced periodic surface structures (LIPSSs) that originate from interference of the incident radiation and interface surface plasmon waves. LIPSSs formation causes transformation of the near-surface layer to amorphous Ga2Se3 at negligible oxidation levels, evidenced from comprehensive structural characterization. LIPSSs imprinted on both output crystal facets provide a 1.2-fold increase of the near-IR transmittance, while the ability to control local periodicity by processing parameters enables multilevel structural color marking of the crystal surface. Our studies highlight direct fs-laser patterning as a multipurpose application-ready technology for precise nanostructuring of promising van der Waals semiconductors, whose layered structure restricts application of common nanofabrication approaches.

2.
RSC Adv ; 10(45): 26843-26852, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-35515775

ABSTRACT

We report the relation between the optical properties and electronic structure of lithium thiogallate (LiGaS2) by performing XPS and XES measurements and theoretical calculations. According to the XPS measurements, the LiGaS2 crystals grown by the Bridgman-Stockbarger method possess promising optical qualities, low hygroscopicity and high stability upon middle-energy Ar+-ion irradiation. The difference in the LiGaS2 band gaps obtained by theoretical calculations and experimental measurements was, for the first time, reduced down to 0.27 eV by applying the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential where the Coulomb repulsion was considered by introducing Hubbard parameter, U. The TB-mBJ+U method also reproduces the XPS spectrum well. The TB-mBJ+U band-structure calculations of LiGaS2 are found to be in good agreement with the XPS and XES experimental data. The accurate electronic structure of LiGaS2 allows further investigation of the optical properties. The relation between the photoluminescence of LiGaS2 and its electronic structure was revealed. Moreover, the theoretical results show the possibility of emissions at higher energy levels in LiGaS2, that has not been measured in experiments yet. Good phase-matching of LiGaS2 was expected to occur at energy levels of 5, 6, 6.2, 7, 7.2, and 8 eV.

3.
J Phys Condens Matter ; 23(10): 105501, 2011 Mar 16.
Article in English | MEDLINE | ID: mdl-21335640

ABSTRACT

This research is focused on the 4f-5d transitions in Ce(3+) centers doped into tetragonal ß-SrAlF(5) single crystals belonging to the I4(1)/a space group. The presence of four non-equivalent Sr(2+) sites in this compound leads to the appearance of three spectroscopically non-equivalent Ce(3+) luminescence centers, which can be well distinguished using a time-resolved laser spectroscopy technique. All 4f-5d transitions have slightly varying excitation and emission energies with characteristic probabilities resulting in several decay times that can be determined experimentally. One of these centers experiences strong perturbation due to a defect nearby, probably the O(2-) impurity ion substituting for the F(-) ion and acting as a charge compensator as well. Identification of these photoluminescence centers is performed using crystal field calculations. The crystal field parameters are calculated for two identified centers using the structural data for SrAlF(5); diagonalization of the crystal field Hamiltonian results in obtaining the splitting of the Ce(3+) 5d states. This method allows 'regular' unperturbed Ce(3+) centers with selected Sr(2+) sites to be assigned.


Subject(s)
Aluminum/chemistry , Cerium/chemistry , Fluorides/chemistry , Ions/chemistry , Luminescent Measurements/methods , Models, Chemical , Spectrum Analysis/instrumentation , Strontium/chemistry , Crystallization , Luminescence , Photons
4.
J Phys Condens Matter ; 21(45): 455502, 2009 Nov 11.
Article in English | MEDLINE | ID: mdl-21694014

ABSTRACT

Electronic and optical properties of lithium thiogallate crystal, LiGaS(2), have been investigated by both experimental and theoretical methods. The plane-wave pseudopotential method based on DFT theory has been used for band structure calculations. The electronic parameters of Ga 3d orbitals have been corrected by the DFT+U methods to be consistent with those measured with x-ray photoemission spectroscopy. Evolution of optical constants of LiGaS(2) over a wide spectral range was determined by developed first-principles theory and dispersion curves were compared with optical parameters defined by spectroscopic ellipsometry in the photon energy range 1.2-5.0 eV. Good agreement has been achieved between theoretical and experimental results.

SELECTION OF CITATIONS
SEARCH DETAIL
...