Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 98(13): 7117-22, 2001 Jun 19.
Article in English | MEDLINE | ID: mdl-11404473

ABSTRACT

Studies of molecular structures at or near their equilibrium configurations have long provided information on their geometry in terms of bond distances and angles. Far-from-equilibrium structures are relatively unknown-especially for complex systems-and generally, neither their dynamics nor their average geometries can be extrapolated from equilibrium values. For such nonequilibrium structures, vibrational amplitudes and bond distances play a central role in phenomena such as energy redistribution and chemical reactivity. Ultrafast electron diffraction, which was developed to study transient molecular structures, provides a direct method for probing the nature of complex molecules far from equilibrium. Here we present our ultrafast electron diffraction observations of transient structures for two cyclic hydrocarbons. At high internal energies of approximately 4 eV, these molecules display markedly different behavior. For 1,3,5-cycloheptatriene, excitation results in the formation of hot ground-state structures with bond distances similar to those of the initial structure, but with nearly three times the average vibrational amplitude. Energy is redistributed within 5 ps, but with a negative temperature characterizing the nonequilibrium population. In contrast, the ring-opening reaction of 1,3-cyclohexadiene is shown to result in hot structures with a CC bond distance of over 1.7 A, which is 0.2 A away from any expected equilibrium value. Even up to 400 ps, energy remains trapped in large-amplitude motions comprised of torsion and asymmetric stretching. These studies promise a new direction for studying structural dynamics in nonequilibrium complex systems.

2.
Science ; 291(5503): 458-62, 2001 Jan 19.
Article in English | MEDLINE | ID: mdl-11161194

ABSTRACT

Ultrafast electron diffraction (UED) has been developed to study transient structures in complex chemical reactions initiated with femtosecond laser pulses. This direct imaging of reactions was achieved using our third-generation apparatus equipped with an electron pulse (1.07 +/- 0.27 picoseconds) source, a charge-coupled device camera, and a mass spectrometer. Two prototypical gas-phase reactions were studied: the nonconcerted elimination reaction of a haloethane, wherein the structure of the intermediate was determined, and the ring opening of a cyclic hydrocarbon containing no heavy atoms. These results demonstrate the vastly improved sensitivity, resolution, and versatility of UED for studying ultrafast structural dynamics in complex molecular systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...