Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 5173, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29581535

ABSTRACT

Mitochondria are complex organelles that participate in many cellular functions, ranging from ATP production to immune responses against viruses and bacteria. This integration of a plethora of functions within a single organelle makes mitochondria a very attractive target to manipulate for intracellular pathogens. We characterised the crosstalk that exists between Brucella abortus, the causative agent of brucellosis, and the mitochondria of infected cells. Brucella replicates in a compartment derived from the endoplasmic reticulum (ER) and modulates ER functionality by activating the unfolded protein response. However, the impact of Brucella on the mitochondrial population of infected cells still requires a systematic study. We observed physical contacts between Brucella containing vacuoles and mitochondria. We also found that B. abortus replication is independent of mitochondrial oxidative phosphorylation and that mitochondrial reactive oxygen species do not participate to the control of B. abortus infection in vitro. We demonstrated that B. abortus and B. melitensis induce a drastic mitochondrial fragmentation at 48 hours post-infection in different cell types, including myeloid and non-myeloid cells. This fragmentation is DRP1-independent and might be caused by a deficit of mitochondrial fusion. However, mitochondrial fragmentation does not change neither Brucella replication efficiency, nor the susceptibility of infected cells to TNFα-induced apoptosis.


Subject(s)
Brucella abortus/genetics , Brucellosis/genetics , Dynamins/genetics , Tumor Necrosis Factor-alpha/genetics , Animals , Apoptosis/genetics , Brucella abortus/pathogenicity , Brucellosis/microbiology , Brucellosis/pathology , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/microbiology , Humans , Macrophages/metabolism , Macrophages/pathology , Mice , Mitochondria/genetics , Mitochondria/microbiology , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Unfolded Protein Response/genetics , Vacuoles/genetics
2.
Front Microbiol ; 8: 1088, 2017.
Article in English | MEDLINE | ID: mdl-28659902

ABSTRACT

Erythritol is the preferential carbon source for most brucellae, a group of facultative intracellular bacteria that cause a worldwide zoonosis. Since this polyol is abundant in genital organs of ruminants and swine, it is widely accepted that erythritol accounts at least in part for the characteristic genital tropism of brucellae. Nevertheless, proof of erythritol availability and essentiality during Brucella intracellular multiplication has remained elusive. To investigate this relationship, we compared ΔeryH (erythritol-sensitive and thus predicted to be attenuated if erythritol is present), ΔeryA (erythritol-tolerant but showing reduced growth if erythritol is a crucial nutrient) and wild type B. abortus in various infection models. This reporting system indicated that erythritol was available but not required for B. abortus multiplication in bovine trophoblasts. However, mice and humans have been considered to lack erythritol, and we found that it was available but not required for B. abortus multiplication in human and murine trophoblastic and macrophage-like cells, and in mouse spleen and conceptus (fetus, placenta and envelopes). Using this animal model, we found that B. abortus infected cells and tissues contained aldose reductase, an enzyme that can account for the production of erythritol from pentose cycle precursors.

3.
Biochem Pharmacol ; 94(3): 173-85, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25707982

ABSTRACT

Eukaryotic cells developed strategies to detect and eradicate infections. The innate immune system, which is the first line of defence against invading pathogens, relies on the recognition of molecular patterns conserved among pathogens. Pathogen associated molecular pattern binding to pattern recognition receptor triggers the activation of several signalling pathways leading to the establishment of a pro-inflammatory state required to control the infection. In addition, pathogens evolved to subvert those responses (with passive and active strategies) allowing their entry and persistence in the host cells and tissues. Indeed, several bacteria actively manipulate immune system or interfere with the cell fate for their own benefit. One can imagine that bacterial effectors can potentially manipulate every single organelle in the cell. However, the multiple functions fulfilled by mitochondria especially their involvement in the regulation of innate immune response, make mitochondria a target of choice for bacterial pathogens as they are not only a key component of the central metabolism through ATP production and synthesis of various biomolecules but they also take part to cell signalling through ROS production and control of calcium homeostasis as well as the control of cell survival/programmed cell death. Furthermore, considering that mitochondria derived from an ancestral bacterial endosymbiosis, it is not surprising that a special connection does exist between this organelle and bacteria. In this review, we will discuss different mitochondrial functions that are affected during bacterial infection as well as different strategies developed by bacterial pathogens to subvert functions related to calcium homeostasis, maintenance of redox status and mitochondrial morphology.


Subject(s)
Bacterial Physiological Phenomena , Mitochondria/microbiology , Energy Metabolism , Mitochondria/physiology , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...