Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 154
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 57(16): 9634-9643, 2018 Aug 20.
Article in English | MEDLINE | ID: mdl-29620870

ABSTRACT

A series of pyridine(diimine)iron tetrazene compounds, (iPrPDI)Fe[(NR)NN(NR)] [iPrPDI = 2,6-(ArN = CMe)2C5H3N; Ar = 2,6-iPr2C6H3] has been prepared either by the addition of 2 equiv of an organic azide, RN3, to the corresponding iron bis(dinitrogen) compound, (iPrPDI)Fe(N2)2 or by the addition of azide to the iron imide derivatives, (iPrPDI)FeNR. The electronic structures of these compounds were determined using a combination of metrical parameters from X-ray diffraction, solution and solid-state magnetic measurements, zero-field 57Fe Mössbauer and 1H NMR spectroscopies, and density functional theory calculations. The overall electronic structure of the iron tetrazene compounds is sensitive to the nature of the tetrazene nitrogen substituent with three distinct classes of compounds identified: (i) overall diamagnetic ( S = 0) compounds arising from intermediate-spin iron(II) centers ( SFe = 1) engaged in antiferromagnetic coupling with both pyridine(diimine) and tetrazene radical anions ( SPDI = -1/2 and Stetrazene = -1/2; R = 2-adamantyl, cyclooctyl, benzyl); (ii) overall S = 1 compounds best described as intermediate-spin iron(III) ( SFe = 3/2) derivatives engaged in antiferromagnetic coupling with a pyridine(diimine) radical anion ( SPDI = -1/2; R = 3,5-Me2C6H3, 4-MeC6H4); (iii) overall S = 2 compounds best described as high-spin iron(III) centers ( SFe = 5/2) engaged in antiferromagnetic coupling to a pyridine(diimine) radical anion ( SPDI = -1/2; R = 1-adamantyl). For both the intermediate- and high-spin ferric cases, the tetrazene ligand adopts the closed-shell, dianionic form, [N4R2]2-. For the case where R = SiMe3, spin-crossover behavior is observed, arising from a spin-state change from intermediate- to high-spin iron(III).

2.
Inorg Chem ; 55(9): 4223-32, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27064509

ABSTRACT

Ene-amides have been explored as ligands and substrates for oxidative coupling. Treatment of CrCl2, Cl2Fe(PMe3)2, and Cl2Copy4 with 2 equiv of {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}Li afforded pseudosquare planar {η(3)-C,C,N-(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Cr (1-Cr, 78%), trigonal {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Fe(PMe3) (2-Fe, 80%), and tetrahedral {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}2Co(py)2 (3-Co, 91%) in very good yields. The addition of CrCl3 to 1-Cr, and FeCl3 to 2-Fe, afforded oxidatively triggered C-C bond formation as rac-2,2'-di(2,6-(i)Pr2C6H3N═)2dicyclohexane (EA2) was produced in modest yields. Various lithium ene-amides were similarly coupled, and the mechanism was assessed via stoichiometric reactions. Some ferrous compounds (e.g., 2-Fe, FeCl2) were shown to catalyze C-arylation of {(2,6-(i)Pr2C6H3)(1-(c)Hexenyl)N}Li with PhBr, but the reaction was variable. Structural characterizations of 1-Cr, 2-Fe, and 3-Co are reported.

3.
Chem Sci ; 7(10): 6357-6364, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-28567248

ABSTRACT

A Cu-catalyzed benzannulation reaction transforms ortho(arylene ethynylene) oligomers into ortho-arylenes. This approach circumvents iterative Suzuki cross-coupling reactions previously used to assemble hindered ortho-arylene backbones. These derivatives form helical folded structures in the solid-state and in solution, as demonstrated by X-ray crystallography and solution-state NMR analysis. DFT calculations of misfolded conformations are correlated with variable-temperature 1H and EXSY NMR to reveal that folding is cooperative and more favorable in halide-substituted naphthalenes. Helical ortho-arylene foldamers with specific aromatic sequences organize functional π-electron systems into arrangements ideal for ambipolar charge transport and show preliminary promise for the surface-mediated synthesis of structurally defined graphene nanoribbons.

4.
Chemistry ; 21(50): 18122-7, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26515732

ABSTRACT

Independent control of halide substitution at six of the seven naphthalene positions of 2-arylnaphthalenes is achieved through the regioselective benzannulation of chloro-, bromo-, and iodoalkynes. The modularity of this approach is demonstrated through the preparation of 44 polyheterohalogenated naphthalene products, most of which are difficult to access through known naphthalene syntheses. The outstanding regioselectivity of the reaction is both predictable and proven unambiguously by single-crystal X-ray diffraction for many examples. This synthetic method enables the rapid preparation of complex aromatic systems poised for further derivatization using established cross-coupling methods. The power and versatility of this approach makes substituted naphthalenes highly attractive building blocks for new organic materials and diversity-oriented synthesis.

5.
Phys Chem Chem Phys ; 17(41): 27665-71, 2015 Nov 07.
Article in English | MEDLINE | ID: mdl-26427626

ABSTRACT

The use of organic molecules represents a very attractive and promising alternative for electrical energy storage applications. Quinones, in general, and anthraquinones, in particular, are especially attractive due to their ability to reversibly exchange multiple electrons per formula unit. When used as the active electrode material in a real lithium-ion battery (LIB), crystalline anthraquinone powders reversibly change crystal packing as a function of state-of-charge (redox state), with well-defined voltage plateaus appearing concomitantly with new phases. Operando powder X-ray diffraction (XRD) is a powerful method for screening the structural stability of organic cathode candidates and for understanding electrochemically-induced structural transformations within organic molecular crystals. Herein we explore the electrochemical lithiation-induced polymorphism of anthraquinone (AQ) and three related derivatives. We believe that this analysis can serve as a model for studying organic charge storage within crystalline small-molecule candidates.

6.
Angew Chem Int Ed Engl ; 54(48): 14407-11, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26440694

ABSTRACT

The impact of redox non-innocence (RNI) on chemical reactivity is a forefront theme in coordination chemistry. A diamide diimine ligand, [{-CH=N(1,2-C6H4)NH(2,6-iPr2C6H3)}2](n) (n = 0 to -4), (dadi)(n), chelates Cr and Fe to give [(dadi)M] ([1Cr(thf)] and [1Fe]). Calculations show [1Cr(thf)] (and [1Cr]) to have a d(4) Cr configuration antiferromagnetically coupled to (dadi)(2-)*, and [1Fe] to be S = 2. Treatment with RN3 provides products where RN is formally inserted into the C-C bond of the diimine or into a C-H bond of the diimine. Calculations on the process support a mechanism in which a transient imide (imidyl) aziridinates the diimine, which subsequently ring opens.

7.
Dalton Trans ; 44(27): 12265-72, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-25984908

ABSTRACT

New titanium(IV) complexes having two bidentate ß-iminoethyl-spiro[4,5]decan-6-onato ligands with various N-aryl substituents have been synthesized. X-ray crystal structure analysis reveals that these titanium complexes all exhibit a C2-symmetric conformation with a distorted octahedral geometry, although the specific orientation of the ligands around the titanium center varies with the identity of the N-aryl moiety. Upon activation with methylaluminoxane (MAO), these complexes catalyze the polymerization of ethylene and propylene. In the case of ethylene, most complexes exhibit the characteristics of a living polymerization between 0 °C and 25 °C, producing polyethylenes with narrow molecular weight distributions and number average molecular weights up to 100,000 g/mol. Depending on the N-aryl substituents, polymerizations of propylene result in products with tacticity ranging from slightly syndiotactic to slightly isotactic.

8.
Chem Sci ; 6(8): 4730-4736, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-29142710

ABSTRACT

Treatment of cis-Me2Fe(PMe3)4 with di-1,2-(E-2-(pyridin-2-yl)vinyl)benzene ((bdvp)H2), a tetradentate ligand precursor, afforded (bdvp)Fe(PMe3)2 (1-PMe3) and 2 equiv. CH4, via C-H bond activation. Similar treatments with tridentate ligand precursors PhCH[double bond, length as m-dash]NCH2(E-CH[double bond, length as m-dash]CHPh) ((pipp)H2) and PhCH[double bond, length as m-dash]N(2-CCMe-Ph) ((pipa)H) under dinitrogen provided trans-(pipp)Fe(PMe3)2N2 (2) and trans-(pipvd)Fe(PMe3)2N2 (3), respectively; the latter via one C-H bond activation, and a subsequent insertion of the alkyne into the remaining Fe-Me bond. All three Fe(ii) vinyl species were protonated with H[BArF 4] to form the corresponding Fe(iv) alkylidene cations, [(bavp)Fe(PMe3)2][BArF 4] (4-PMe3), [(piap)Fe(PMe3)3][BArF 4] (5), and [(pipad)Fe(PMe3)3][BArF 4] (6). Mössbauer spectroscopic measurements on the formally Fe(ii) and Fe(iv) derivatives revealed isomer shifts within 0.1 mm s-1, reflecting the similarity in their bond distances.

9.
Inorg Chem ; 53(14): 7467-84, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-25010819

ABSTRACT

Nacnac-based tridentate ligands containing a pyridyl-methyl and a 2,6-dialkyl-phenylamine (i.e., (2,6-R2-C6H3N═C(Me)CH═C(Me)NH(CH2py); R = Et, {Et(nn)PM}H; R = (i)Pr, {(i)Pr(nn)PM}H) were synthesized by condensation routes. Treatment of M{N(TMS)2}THFn (M = Cr, n = 2; M = Fe, Co, n = 1; TMS = trimethylsilane; THF = tetrahydrofuran) with {(i)Pr(nn)PM}H) afforded {(i)Pr(nn)PM}MN(TMS)2 (1-M(iPr); M = Cr, Fe); {Et(nn)PM}MN(TMS)2 (1-M(Et); M = Fe, Co) was similarly obtained. {R(nn)PM}FeBr (R = (i)Pr, Et; 2-Fe(R)) were prepared from FeBr2 and {R(nn)PM}Li, and alkylated to generate {R(nn)PM}Fe(neo)Pe (R = (i)Pr, Et; 3-Fe(R)). Carbonylation of 3-Fe(R) provided {(i)Pr(nn)PM}Fe(CO(neo)Pe)CO (4-Fe(iPr)), and carbonylations of 1-Fe(R) (R = Et, (i)Pr) and 1-Cr(iPr) induced deamination to afford {R(nn)PI}Fe(CO)2 (R = (i)Pr, 5-Fe(iPr); Et, 5-Fe(Et)), where PI is pyridine-imine, and {κ(2)-N,N-pyrim-pyr}Cr(CO)4 (6-Cr(iPr)), in which the aryl-amide side of the nacnac attacked the incipient PI group. Carbon-carbon bonds were formed at the imine carbon of the {R(nn)PI} ligand. Addition of [{(i)Pr(nn)PI}(2-)](K(+)(THF)x)2 to FeCl3 generated {(i)Pr(nn)CHpy}2Fe2Cl2 (7-Fe(iPr)), and TMSN3 induced the deamination of 1-Fe(Et), but with disproportionation to provide {[Et(nn)CHpy]2}Fe (8-Fe(Et)). Ph2CN2 induced C-C bond formation with 1-Fe(iPr) via its thermal degradation to ultimately afford {(i)Pr(nn)CHpy}2(FeN═CPh2)2 (9-Fe(iPr)). The compounds were examined by X-ray crystallography (1-M(iPr), M = Cr, Fe; 1-Co(Et); 2-Fe(iPr); 4-Fe(iPr); 5-Fe(iPr); 6-Cr(iPr); 7-Fe(iPr); 8-Fe(Et); 9-Fe(iPr)), Mössbauer spectroscopy, and NMR spectroscopy. Structural parameters assessing redox noninnocence are discussed, as are structural and mechanistic consequences of the various electronic environments.


Subject(s)
Chelating Agents/chemistry , Chromium/chemistry , Iron/chemistry , Pyridines/chemistry , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Models, Molecular , Spectroscopy, Mossbauer
10.
J Am Chem Soc ; 136(20): 7213-6, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24773453

ABSTRACT

While traditional polymerization of linear α-olefins (LAOs) typically provides amorphous, low T(g) polymers, chain-straightening polymerization represents a route to semicrystalline materials. A series of α-diimine nickel catalysts were tested for the polymerization of various LAOs. Although known systems yielded amorphous or low-melting polymers, the "sandwich" α-diimines 3-6 yielded semicrystalline "polyethylene" comprised primarily of unbranched repeat units via a combination of uncommon regioselective 2,1-insertion and precision chain-walking events.


Subject(s)
Alkenes/chemistry , Alkenes/chemical synthesis , Imines/chemistry , Nickel/chemistry , Organometallic Compounds/chemistry , Catalysis , Crystallography, X-Ray , Models, Molecular , Molecular Structure , Polymerization
11.
Inorg Chem ; 53(9): 4459-74, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24762120

ABSTRACT

Nacnac-based tetradentate chelates, {nacnac-(CH2py)2}(-) ({nn(PM)2}(-)) and {nacnac-(CH2py)(CHpy)}(n) ({nn(PM)(PI)}(n)) have been investigated in iron complexes. Treatment of Fe{N(TMS)2}2(THF) with {nn(PM)2}H afforded {nn(PM)2}FeN(TMS)2 [1-N(TMS)2], which led to {nn(PM)2}FeCl (1-Cl) from HCl and to {nn(PM)2}FeN3 (1-N3) upon salt metathesis. Dehydroamination of 1-N(TMS)2 was induced by L (L = PMe3, CO) to afford {nn(PM)(PI)}Fe(PMe3)2 [2-(PMe3)2] and {nn(PM)(PI)}FeCO (3-CO). Substitution of 2-(PMe3)2 led to {nn(PM)(PI)}Fe(PMe3)CO [2-(PMe3)CO], and exposure to a vacuum provided {nn(PM)(PI)}Fe(PMe3) (3-PMe3). Metathesis routes to {nn(PM)(PI)}FeL2 (2-L2; L = PMe3, PMe2Ph) and {nn(PM)(PI)}FeL (3-L; L = PMePh2, PPh3) from [{nn(PM)(PI)}(2-)]Li2 and FeBr2(THF)2 in the presence of L proved feasible, and 1e(-) and 2e(-) oxidation of 2-(PMe3)2 afforded 2(+)-(PMe3)2 and 2(2+)-(PMe3)2 salts. Mössbauer spectroscopy, structural studies, and calculational assessments revealed the dominance of iron(II) in both high-spin (1-X) and low-spin (2-L2 and 3-L) environments, and the redox noninnocence (RNI) of {nn(PM)(PI)}(n) [2-L2, 3-L, n = 2-; 2(+)-(PMe3)2, n = 1-; 2(2+)-(PMe3)2, n = 0]. A discussion regarding the utility of RNI in chemical reactivity is proffered.

12.
J Am Chem Soc ; 135(50): 18901-11, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24199614

ABSTRACT

The enantioselective polymerization of propylene oxide (PO) using biaryl-linked bimetallic salen Co catalysts was investigated experimentally and theoretically. Five key aspects of this catalytic system were examined: (1) the structural features of the catalyst, (2) the regio- and stereoselectivity of the chain-growth step, (3) the probable oxidation and electronic state of Co during the polymerization, (4) the role of the cocatalyst, and (5) the mechanism of monomer enchainment. Several important insights were revealed. First, density functional theory (DFT) calculations provided detailed structural information regarding the regio- and stereoselective chain-growth step. Specifically, the absolute stereochemistry of the binaphthol linker determines the enantiomer preference in the polymerization, and the interaction between the salen ligand and the growing polymer chain is a fundamental aspect of enantioselectivity. Second, a new bimetallic catalyst with a conformationally flexible biphenol linker was synthesized and found to enantioselectively polymerize PO, though with lower enantioselectivity than the binaphthol linked catalysts. Third, DFT calculations revealed that the active form of the catalyst has two active exo anionic ligands (chloride or carboxylate) and an endo polymer alkoxide which can ring-open an adjacent cobalt-coordinated epoxide. Fourth, calculations showed that initiation is favored by an endo chloride ligand, while propagation is favored by the presence of two exo carboxylate ligands.

13.
J Am Chem Soc ; 135(45): 16853-64, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-23654300

ABSTRACT

A combination of X-ray crystallography, (6)Li, (15)N, and (13)C NMR spectroscopies, and density functional theory computations affords insight into the structures and reactivities of intervening aggregates underlying highly selective asymmetric alkylations of carboxylic acid dianions (enediolates) mediated by the dilithium salt of a C2-symmetric chiral tetraamine. Crystallography shows a trilithiated n-butyllithium-dilithiated amide that has dimerized to a hexalithiated form. Spectroscopic studies implicate the non-dimerized trilithiated mixed aggregate. Reaction of the dilithiated amide with the dilithium enediolate derived from phenylacetic acid affords a tetralithio aggregate comprised of the two dianions in solution and the dimerized octalithio form in the solid state. Computational studies shed light on the details of the solution structures and afford a highly predictive stereochemical model.


Subject(s)
Acetates/chemistry , Amides/chemistry , Lithium/chemistry , Organometallic Compounds/chemistry , Alkylation , Anions/chemistry , Crystallography, X-Ray , Dimerization , Magnetic Resonance Spectroscopy , Models, Molecular , Stereoisomerism
14.
Inorg Chem ; 52(6): 3295-312, 2013 Mar 18.
Article in English | MEDLINE | ID: mdl-23448130

ABSTRACT

Molecular orbital analysis depicts the CNC(nb) backbone of the smif (1,3-di-(2-pyridyl)-2-azaallyl) ligand as having singlet diradical and/or ionic character where electrophilic or nucleophilic attack is plausible. Reversible dimerization of (smif)Fe{N(SiMe3)2} (1) to [{(Me3Si)2N}Fe]2(µ-κ(3),κ(3)-N,py2-smif,smif) (2) may be construed as diradical coupling. A proton transfer within the backbone-methylated, and o-pyridine-methylated smif of putative ((b)Me2(o)Me2smif)FeN(SiMe3)2 (8) provides a route to [{(Me3Si)2N}Fe]2(µ-κ(4),κ(4)-N,py2,C-((b)Me,(b)CH2,(o)Me2(smif)H))2 (9). A 3 + 2 cyclization of ditolyl-acetylene occurs with 1, leading to the dimer [{2,5-di(pyridin-2-yl)-3,4-di-(p-tolyl-2,5-dihydropyrrol-1-ide)}FeN(SiMe3)2]2 (11), and the collateral discovery of alkyne cyclotrimerization led to a brief study that identified Fe(N(SiMe3)2(THF) as an effective catalyst. Nucleophilic attack by (smif)2Fe (13) on (t)BuNCO and (2,6-(i)Pr2C6H3)NCO afforded (RNHCO-smif)2Fe (14a, R = (t)Bu; 14b, 2,6-(i)PrC6H3). Calculations suggested that (dpma)2Fe (15) would favorably lose dihydrogen to afford (smif)2Fe (13). H2-transfer to alkynes, olefins, imines, PhN═NPh, and ketones was explored, but only stoichiometric reactions were affected. Some physical properties of the compounds were examined, and X-ray structural studies on several dinuclear species were conducted.

15.
J Am Chem Soc ; 135(9): 3511-27, 2013 Mar 06.
Article in English | MEDLINE | ID: mdl-23363318

ABSTRACT

Treatment of cis-(Me3P)4FeMe2 with ortho-substituted diarylimines afforded 2 equiv of MeH, PMe3, and {mer-κC,N,C'-(Ar-2-yl)CH2N═CH(Ar'-2-yl)}Fe(PMe3)3 (Ar = 3,4,6-(F)3-C6H, Ar' = 3,5-(CF3)2-C6H2, 1a; Ar = 3,4,6-(F)3-C6H, Ar' = 3,4,5-(F)3-C6H, 1b; Ar = 4,5,6-(F)3-C6H, Ar' = 3,5-(CF3)2-C6H2, 1c; Ar = C6H4, Ar' = 3-(OMe)-C6H3, 1d; Ar = 4,5,6-(F)3-C6H, Ar' = 3,6-Me2-C6H3, 1e; Ar = C6H4, Ar' = 3,6-Me2-C6H2, 1f). Exposure of 1a-f to O2 caused rapid degradation, but substitution of the unique PMe3 with N2 occurred when 1a-f were exposed to air or N2 (1 atm), yielding {mer-κC,N,C'-(Ar-2-yl)CH2N═CH(Ar'-2-yl)}Fe(PMe3)2L (L = N2, 2a-f); CO, CNMe, and N2CPh2 derivatives (L = CO, 3a-d,f; L = CNMe, 8b; L = N2CPh2, 9b) were prepared. Dihydrogen or NH3 binding to {mer-κC,N,C'-(3,4,6-(F)3-C6H-2-yl)CH2N═CH-(3,4,5-(F)3-C6H-2-yl)}Fe(PMe3)2 (1b', S = 1 (calc)) to provide 5b (L = H2) or 6b (L = NH3) was found comparable to that of N2, while PMe3 (1b) and pyridine (L = py, 7b) adducts were unfavorable. Protolytic conditions were modeled using HCCR as weak acids, and trans-{κC,N-(3,4,5-(F)3-C6H2)CH2N═CH(3,4,6-(F)3-C6H-2-yl)}Fe(PMe3)3(CCR) (R = Me, 4b-Me; R = Ph, 4b-Ph) were generated from 1b. Exposure of 1b to N2O or N3SO2tol generated 2b and Me3PO or Me3P═N(SO2)tol, respectively. Calculations revealed 2b to be thermodynamically and kinetically favored over the calculated Fe(III) superoxide complex, (3)[FeO2], relative to 1b' + N2 + O2. The correlation of 1b' + (3)O2 to (3)[FeO2] is likely to have a relatively high intersystem crossing point (ICP) relative to 1b' + N2 to 2b, thereby explaining the dinitrogen selectivity.


Subject(s)
Ferrous Compounds/chemistry , Imines/chemistry , Nitrogen/chemistry , Air , Ferrous Compounds/chemical synthesis , Molecular Conformation
16.
Inorg Chem ; 52(2): 635-46, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23268722

ABSTRACT

Oxidation and reduction of the bis(imino)pyridine iron dinitrogen compound, ((iPr)PDI)FeN(2) ((iPr)PDI = 2,6-(2,6-(i)Pr(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N) has been examined to determine whether the redox events are metal or ligand based. Treatment of ((iPr)PDI)FeN(2) with [Cp(2)Fe][BAr(F)(4)] (BAr(F)(4) = B(3,5-(CF(3))(2)-C(6)H(3))(4)) in diethyl ether solution resulted in N(2) loss and isolation of [((iPr)PDI)Fe(OEt(2))][BAr(F)(4)]. The electronic structure of the compound was studied by SQUID magnetometry, X-ray diffraction, EPR and zero-field (57)Fe Mössbauer spectroscopy. These data, supported by computational studies, established that the overall quartet ground state arises from a high spin iron(II) center (S(Fe) = 2) antiferromagnetically coupled to a bis(imino)pyridine radical anion (S(PDI) = 1/2). Thus, the oxidation event is principally ligand based. The one electron reduction product, [Na(15-crown-5)][((iPr)PDI)FeN(2)], was isolated following addition of sodium naphthalenide to ((iPr)PDI)FeN(2) in THF followed by treatment with the crown ether. Magnetic, spectroscopic, and computational studies established a doublet ground state with a principally iron-centered SOMO arising from an intermediate spin iron center and a rare example of trianionic bis(imino)pyridine chelate. Reduction of the iron dinitrogen complex where the imine methyl groups have been replaced by phenyl substituents, ((iPr)BPDI)Fe(N(2))(2) resulted in isolation of both the mono- and dianionic iron dinitrogen compounds, [((iPr)BPDI)FeN(2)](-) and [((iPr)BPDI)FeN(2)](2-), highlighting the ability of this class of chelate to serve as an effective electron reservoir to support neutral ligand complexes over four redox states.


Subject(s)
Electrons , Imines/chemistry , Iron Chelating Agents/chemistry , Iron/chemistry , Nitrogen/chemistry , Pyridines/chemistry , Anions , Molecular Structure , Oxidation-Reduction , Quantum Theory , Spectroscopy, Mossbauer
17.
J Am Chem Soc ; 134(41): 17125-37, 2012 Oct 17.
Article in English | MEDLINE | ID: mdl-23043331

ABSTRACT

Addition of biphenylene to the bis(imino)pyridine iron dinitrogen complexes, ((iPr)PDI)Fe(N(2))(2) and [((Me)PDI)Fe(N(2))](2)(µ(2)-N(2)) ((R)PDI = 2,6-(2,6-R(2)-C(6)H(3)-N═CMe)(2)C(5)H(3)N; R = Me, (i)Pr), resulted in oxidative addition of a C-C bond at ambient temperature to yield the corresponding iron biphenyl compounds, ((R)PDI)Fe(biphenyl). The molecular structures of the resulting bis(imino)pyridine iron metallacycles were established by X-ray diffraction and revealed idealized square pyramidal geometries. The electronic structures of the compounds were studied by Mössbauer spectroscopy, NMR spectroscopy, magnetochemistry, and X-ray absorption and X-ray emission spectroscopies. The experimental data, in combination with broken-symmetry density functional theory calculations, established spin crossover (low to intermediate spin) ferric compounds antiferromagnetically coupled to bis(imino)pyridine radical anions. Thus, the overall oxidation reaction involves cooperative electron loss from both the iron center and the redox-active bis(imino)pyridine ligand.


Subject(s)
Carbon/chemistry , Ferric Compounds/chemistry , Imides/chemistry , Pyridines/chemistry , Ferric Compounds/chemical synthesis , Models, Molecular , Molecular Structure , Oxidation-Reduction , Quantum Theory
18.
J Am Chem Soc ; 134(44): 18161-4, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23016874

ABSTRACT

A tetrakis(dialkylamino)phosphonium cation was evaluated as a functional group for alkaline anion exchange membranes (AAEMs). The base stability of [P(N(Me)Cy)(4)](+) was directly compared to that of [BnNMe(3)](+) in 1 M NaOD/CD(3)OD. The high base stability of [P(N(Me)Cy)(4)](+) relative to [BnNMe(3)](+) inspired the preparation of AAEM materials composed of phosphonium units attached to polyethylene. The AAEMs (hydroxide conductivity of 22 ± 1 mS cm(-1) at 22 °C) were prepared using ring-opening metathesis polymerization, and their stabilities were evaluated in 15 M KOH at 22 °C and in 1 M KOH at 80 °C.

19.
Inorg Chem ; 51(15): 8177-86, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22830452

ABSTRACT

Attempted syntheses of (smif)(2)Ti (smif =1,3-di-(2-pyridyl)-2-azaallyl) based on metatheses of TiCl(n)L(m) (n = 2-4) with M(smif) (M = Li, Na), in the presence of a reducing agent (Na/Hg) when necessary, failed, but several apparent Ti(II) species were identified by X-ray crystallography and multidimensional NMR spectroscopy: (smif){Li(smif-smif)}Ti (1, X-ray), [(smif)Ti](2)(µ-κ(3),κ(3)-N,N(py)(2)-smif,smif) (2), (smif)Ti(κ(3)-N,N(py)(2)-smif,(smif)H) (3), and (smif)Ti(dpma) (4, dpma = di-2-pyridylmethyl-amide). NMR spectroscopy and K-edge XAS showed that each compound possesses ligands that are redox noninnnocent, such that d(1) Ti(III) centers AF-couple to ligand radicals: (smif){Li(smif-smif)(2-)}Ti(III) (1), [(smif(2-))Ti(III)](2)(µ-κ(3),κ(3)-N,N(py)(2)-smif,smif) (2), [(smif(2-))Ti(III)](κ(3)-N,N(py)(2)-smif,(smif)H) (3), and (smif(2-))Ti(III)(dpma) (4). The instability of (smif)(2)Ti relative to its C-C coupled dimer, 2, is rationalized via the complementary nature of the amide and smif radical dianion ligands, which are also common to 3 and 4. Calculations support this contention.


Subject(s)
Coordination Complexes/chemistry , Pyridines/chemistry , Titanium/chemistry , Crystallography, X-Ray , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Oxidation-Reduction , Spectrophotometry, Ultraviolet
20.
J Am Chem Soc ; 134(7): 3377-86, 2012 Feb 22.
Article in English | MEDLINE | ID: mdl-22324370

ABSTRACT

Carbonylation of the hafnocene dinitrogen complex, [Me(2)Si(η(5)-C(5)Me(4))(η(5)-C(5)H(3)-(t)Bu)Hf](2)(µ(2), η(2), η(2)-N(2)), yields the corresponding hafnocene oxamidide compound, arising from N(2) cleavage with concomitant C-C and C-N bond formation. Monitoring the addition of 4 atm of CO by NMR spectroscopy allowed observation of an intermediate hafnocene complex with terminal and bridging isocyanates and a terminal carbonyl. (13)C labeling studies revealed that the carbonyl is the most substitutionally labile ligand in the intermediate and that N-C bond formation in the bridging isocyanate is reversible. No exchange was observed with the terminal isocyanate. Kinetic data established that the conversion of the intermediate to the hafnocene oxamidide was not appreciably inhibited by carbon monoxide and support a pathway involving rate-determining C-C coupling of the isocyanate ligands. Addition of methyl iodide to the intermediate hafnocene resulted in additional carbon-carbon bond formation arising from CO homologation following nitrogen methylation. Similar reactivity with (t)BuNCO was observed where C-C coupling occurred upon cycloaddition of the heterocumulene. By contrast, treatment of the intermediate hafnocene with CO(2) resulted in formation of a µ-oxo hafnocene with two terminal isocyanate ligands.

SELECTION OF CITATIONS
SEARCH DETAIL
...