Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Thorac Cardiovasc Surg ; 110(1): 27-35, 1995 Jul.
Article in English | MEDLINE | ID: mdl-7609553

ABSTRACT

Profound hypothermia induced with cardiopulmonary bypass has a protective effect on spinal cord function during operations on the thoracoabdominal aorta. The mechanism of this protection remains unknown. It has been proposed that the release of excitatory amino acids in the extracellular space plays a causal role in irreversible neuronal damage. We investigated the changes in extracellular neurotransmitter amino acid concentrations with the use of in vivo microdialysis in a swine model of spinal cord ischemia. All animals underwent left thoracotomy and right atrium-femoral artery cardiopulmonary bypass with additional aortic arch perfusion. Lumbar laminectomies were then done and microdialysis probes were inserted stereotactically in the anterior horn of the second and fourth segments of the lumbar spinal cord. The probes were perfused with artificial cerebrospinal fluid at a rate of 2 microliters/min and 15-minute samples were assayed by high-performance liquid chromatography. Group 1 animals (n = 6) underwent aortic clamping distal to the left subclavian artery and proximal to the renal arteries for 60 minutes at normothermia (37 degrees C) and group 2 animals (n = 5) were cooled to a rectal temperature of 20 degrees C before application of aortic clamps, maintained at this level during cardiopulmonary bypass until the aorta was unclamped, and then slowly rewarmed to 37 degrees C. Seven amino acids were studied, including two excitatory neurotransmitters (glutamate and aspartate) and five putative inhibitory neurotransmitters (glycine, gamma-aminobutyric acid, serine, adenosine, and taurine). Glutamate exhibited a threefold increase in extracellular concentration during normothermic ischemia compared with baseline values and remained elevated until 60 minutes after reperfusion. The increase in aspartate concentration was not significant. The extracellular concentrations of glycine and gamma-aminobutyric acid also increased significantly during ischemia and reperfusion. Hypothermia uniformly prevented the release of amino acids in the extracellular space. Glutamate levels remained significantly decreased even after rewarming to normothermia whereas glycine levels returned to baseline values. These results are consistent with a role for excitatory amino acids in the production of ischemic spinal cord injury and suggest that the mechanism of hypothermic protection may be related to decreased release of these amino acids in the ischemic spinal cord.


Subject(s)
Cardiopulmonary Bypass , Hypothermia, Induced , Ischemia/metabolism , Neurotransmitter Agents/metabolism , Spinal Cord/blood supply , Spinal Cord/metabolism , Analysis of Variance , Animals , Aspartic Acid/metabolism , Disease Models, Animal , Evoked Potentials, Somatosensory , Extracellular Space/metabolism , Glutamic Acid/metabolism , Glycine/metabolism , Ischemia/pathology , Microdialysis , Spinal Cord/physiopathology , Swine , Thoracotomy , gamma-Aminobutyric Acid/metabolism
2.
Ann Thorac Surg ; 58(2): 312-9; discussion 319-20, 1994 Aug.
Article in English | MEDLINE | ID: mdl-7915102

ABSTRACT

The release of excitatory amino acids, particularly glutamate, into the extracellular space plays a causal role in irreversible neuronal damage after central nervous system ischemia. Dextrorphan, a noncompetitive N-methyl-D-aspartate receptor antagonist, has been shown to provide significant protection against cerebral damage after focal ischemia. We investigated the changes in extracellular neurotransmitter amino acid concentrations using in vivo microdialysis in a swine model of spinal cord ischemia. After lumbar laminectomies were performed, all animals underwent left thoracotomy and right atrial-femoral cardiopulmonary bypass with additional aortic arch perfusion. Microdialysis probes were then inserted stereotactically into the lumbar spinal cord. The probes were perfused with artificial cerebrospinal fluid and 15-minute samples were assayed using high-performance liquid chromatography. Group 1 animals (n = 9) underwent aortic clamping distal to the left subclavian and proximal to the renal arteries for 60 minutes. Group 2 animals (n = 7) were treated with dextrorphan before application of aortic clamps, and during aortic occlusion and reperfusion. Five amino acids were studied, including two excitatory neurotransmitters (glutamate and aspartate) and three putative inhibitory neurotransmitters (glycine, gamma-amino-butyric acid, and serine). Somatosensory-evoked potentials and motor-evoked potentials were monitored. Glutamate exhibited a threefold increase in extracellular concentration during normothermic ischemia compared with baseline values and remained elevated until 60 minutes after reperfusion. In animals treated with dextrorphan, glutamate concentrations decreased to one-third of baseline levels before aortic clamping and remained unchanged during ischemia and reperfusion. There was early loss of somatosensory-evoked potentials and motor-evoked potentials during ischemia in group 1 animals.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Amino Acids/metabolism , Dextrorphan/pharmacology , Ischemia/metabolism , Neurotransmitter Agents/metabolism , Spinal Cord/blood supply , Animals , Aspartic Acid/metabolism , Evoked Potentials , Evoked Potentials, Somatosensory , Glutamates/metabolism , Glutamic Acid , Glycine/metabolism , Ischemia/physiopathology , Microdialysis , Motor Cortex/physiopathology , Receptors, Amino Acid/antagonists & inhibitors , Serine/metabolism , Swine , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...