Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceuticals (Basel) ; 15(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35337062

ABSTRACT

The use of sunscreens is an established and recommended practice to protect skin from solar-induced damage. Around 30 UV filters can be used in sunscreen products in the European Union, which ought to follow the requirements of the regulation 1223/2009 to ensure their efficacy and safety for humans. Nevertheless, low photostability and putative toxicity for humans and environment have been reported for some UV filters. Particularly, the negative impact in marine organisms has recently raised concern on the scientific community. Therefore, it is important to develop new UV filters with improved safety profile and photostability. Over the last two decades, nearly 200 new compounds have revealed promising photoprotection properties. The explored compounds were obtained through different approaches, including exploration of natural sources, synthetic pathways, and nanotechnology. Almost 50 natural products and around 140 synthetic derivatives, such as benzimidazoles, benzotriazoles, hydroxycinnamic acids, xanthones, triazines, among others, have been studied aiming the discovery of novel, effective, and safer future photoprotective agents. Herein, we provide the reader with an overview about UV filters' challenges and prospects, offering a forward-looking to the next-generation of UV filters.

2.
Mar Drugs ; 19(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34436303

ABSTRACT

Marine ingredients are a source of new chemical entities with biological action, which is the reason why they have gained relevance in the cosmetic industry. The facial care category is the most relevant in this industry, and within it, the sensitive skin segment occupies a prominent position. This work analyzed the use of marine ingredients in 88 facial cosmetics for sensitive skin from multinational brands, as well as their composition and the scientific evidence that supports their efficacy. Marine ingredients were used in 27% of the cosmetic products for sensitive skin and included the species Laminaria ochroleuca, Ascophyllum nodosum (brown macroalgae), Asparagopsis armata (red macroalgae), and Chlorella vulgaris (microalgae). Carotenoids, polysaccharides, and lipids are the chemical classes highlighted in these preparations. Two ingredients, namely the Ascophyllum nodosum extract and Asparagopsis armata extracts, present clinical evidence supporting their use for sensitive skin. Overall, marine ingredients used in cosmetics for sensitive skin are proposed to reduce skin inflammation and improve the barrier function. Marine-derived preparations constitute promising active ingredients for sensitive skin cosmetic products. Their in-depth study, focusing on the extracted metabolites, randomized placebo-controlled studies including volunteers with sensitive skin, and the use of extraction methods that are more profitable may provide a great opportunity for the cosmetic industry.


Subject(s)
Cosmetics , Dermatologic Agents/therapeutic use , Face , Hypersensitivity/drug therapy , Microalgae , Seaweed , Animals , Aquatic Organisms , Humans , Industry
3.
AAPS PharmSciTech ; 8(3): E76, 2007 Sep 21.
Article in English | MEDLINE | ID: mdl-17915826

ABSTRACT

The purpose of the present research was to produce a quick/slow biphasic delivery system for ibuprofen. A dual-component tablet made of a sustained release tableted core and an immediate release tableted coat was prepared by direct compression. Both the core and the coat contained a model drug (ibuprofen). The sustained release effect was achieved with a polymer (hydroxypropyl methylcellulose [HPMC] or ethylcellulose) to modulate the release of the drug. The in vitro drug release profile from these tablets showed the desired biphasic release behavior: the ibuprofen contained in the fast releasing component was dissolved within 2 minutes, whereas the drug in the core tablet was released at different times (approximately 16 or >24 hours), depending on the composition of the matrix tablet. Based on the release kinetic parameters calculated, it can be concluded that the HPMC core was suitable for providing a constant and controlled release (zero order) for a long period of time.


Subject(s)
Drug Delivery Systems , Ibuprofen/administration & dosage , Hypromellose Derivatives , Ibuprofen/chemistry , Methylcellulose/administration & dosage , Methylcellulose/analogs & derivatives , Solubility , Tablets
SELECTION OF CITATIONS
SEARCH DETAIL
...