Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J R Soc Interface ; 21(215): 20230618, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38919988

ABSTRACT

Here, employing computer simulation tools, we present a study on the development of a bacterial biofilm from a single starter cell on a flat inert surface overlaid by an aqueous solution containing nutrients. In our simulations, surface colonization involves an initial stage of two-dimensional cell proliferation to eventually transition to three-dimensional growth leading to the formation of biofilm colonies with characteristic three-dimensional semi-ellipsoids shapes. Thus, we have introduced the influence of the nutrient concentration on bacterial growth, and calculated the cell growth rate as a function of nutrient uptake, which in turn depends on local nutrient concentration in the vicinity of each bacterial cell. Our results show that the combination of cell growth and nutrient uptake and diffusion leads to the formation of stratified colonies containing an inner core in which nutrients are depleted and cells cannot grow or divide, surrounded by an outer, shallow crust in which cells have access to nutrients from the bulk medium and continue growing. This phenomenon is more apparent at high uptake rates that enable fast nutrient depletion. Our simulations also predict that the shape and internal structure of the biofilm are largely conditioned by the balance between nutrient diffusion and uptake.


Subject(s)
Biofilms , Computer Simulation , Models, Biological , Biofilms/growth & development , Nutrients/metabolism , Bacterial Physiological Phenomena , Bacteria/metabolism , Bacteria/growth & development
2.
Front Cell Dev Biol ; 9: 681933, 2021.
Article in English | MEDLINE | ID: mdl-34350178

ABSTRACT

The size of organs is critical for their function and often a defining trait of a species. Still, how organs reach a species-specific size or how this size varies during evolution are problems not yet solved. Here, we have investigated the conditions that ensure growth termination, variation of final size and the stability of the process for developmental systems that grow and differentiate simultaneously. Specifically, we present a theoretical model for the development of the Drosophila eye, a system where a wave of differentiation sweeps across a growing primordium. This model, which describes the system in a simplified form, predicts universal relationships linking final eye size and developmental time to a single parameter which integrates genetically-controlled variables, the rates of cell proliferation and differentiation, with geometrical factors. We find that the predictions of the theoretical model show good agreement with previously published experimental results. We also develop a new computational model that recapitulates the process more realistically and find concordance between this model and theory as well, but only when the primordium is circular. However, when the primordium is elliptical both models show discrepancies. We explain this difference by the mechanical interactions between cells, an aspect that is not included in the theoretical model. Globally, our work defines the quantitative relationships between rates of growth and differentiation and organ primordium size that ensure growth termination (and, thereby, specify final eye size) and determine the duration of the process; identifies geometrical dependencies of both size and developmental time; and uncovers potential instabilities of the system which might constraint developmental strategies to evolve eyes of different size.

3.
Phys Rev E ; 103(5-1): 052407, 2021 May.
Article in English | MEDLINE | ID: mdl-34134235

ABSTRACT

Microscopic organisms, such as bacteria, have the ability of colonizing surfaces and developing biofilms that can determine diseases and infections. Most bacteria secrete a significant amount of extracellular polymer substances that are relevant for biofilm stabilization and growth. In this work, we apply computer simulation and perform experiments to investigate the impact of polymer size and concentration on early biofilm formation and growth. We observe as bacterial cells formed loose, disorganized clusters whenever the effect of diffusion exceeded that of cell growth and division. Addition of model polymeric molecules induced particle self-assembly and aggregation to form compact clusters in a polymer size- and concentration-dependent fashion. We also find that large polymer size or concentration lead to the development of intriguing stripe-like and dendritic colonies. The results obtained by Brownian dynamic simulation closely resemble the morphologies that we experimentally observe in biofilms of a Pseudomonas Putida strain with added polymers. The analysis of the Brownian dynamic simulation results suggests the existence of a threshold polymer concentration that distinguishes between two growth regimes. Below this threshold, the main force driving polymer-induced compaction is the hindrance of bacterial cell diffusion, while collective effects play a minor role. Above this threshold, especially for large polymers, polymer-induced compaction is a collective phenomenon driven by depletion forces. Well above this concentration threshold, severely limited diffusion drives the formation of filaments and dendritic colonies.

SELECTION OF CITATIONS
SEARCH DETAIL
...