Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Exp Med ; 221(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38517332

ABSTRACT

Heterozygous mutations in the TBK1 gene can cause amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The majority of TBK1-ALS/FTD patients carry deleterious loss-of-expression mutations, and it is still unclear which TBK1 function leads to neurodegeneration. We investigated the impact of the pathogenic TBK1 missense variant p.E696K, which does not abolish protein expression, but leads to a selective loss of TBK1 binding to the autophagy adaptor protein and TBK1 substrate optineurin. Using organelle-specific proteomics, we found that in a knock-in mouse model and human iPSC-derived motor neurons, the p.E696K mutation causes presymptomatic onset of autophagolysosomal dysfunction in neurons precipitating the accumulation of damaged lysosomes. This is followed by a progressive, age-dependent motor neuron disease. Contrary to the phenotype of mice with full Tbk1 knock-out, RIPK/TNF-α-dependent hepatic, neuronal necroptosis, and overt autoinflammation were not detected. Our in vivo results indicate autophagolysosomal dysfunction as a trigger for neurodegeneration and a promising therapeutic target in TBK1-ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Motor Neurons/pathology , Mutation , Neuroinflammatory Diseases , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
2.
Nat Neurosci ; 26(6): 942-954, 2023 06.
Article in English | MEDLINE | ID: mdl-37231108

ABSTRACT

Microglial cells are the major immune cells of the central nervous system (CNS), and directly react to neurodegeneration, but other immune cell types are also able to react to pathology and can modify the course of neurodegenerative processes. These mainly include monocytes/macrophages and lymphocytes. While these peripheral immune cells were initially considered to act only after infiltrating the CNS, recent evidence suggests that some of them can also act directly from the periphery. We will review the existing and emerging evidence for a role of peripheral immune cells in neurodegenerative diseases, both with and without CNS infiltration. Our focus will be on amyotrophic lateral sclerosis, but we will also compare to Alzheimer's disease and Parkinson's disease to highlight similarities or differences. Peripheral immune cells are easily accessible, and therefore may be an attractive therapeutic target for neurodegenerative diseases. Thus, understanding how these peripheral immune cells communicate with the CNS deserves deeper investigation.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Central Nervous System , Alzheimer Disease/metabolism , Neurodegenerative Diseases/pathology , Amyotrophic Lateral Sclerosis/pathology , Leukocytes/metabolism
3.
Cell Mol Life Sci ; 80(6): 150, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37184603

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease in adults with no curative treatment. Neurofilament (NF) level in patient' fluids have recently emerged as the prime biomarker of ALS disease progression, while NF accumulation in MNs of patients is the oldest and one of the best pathological hallmarks. However, the way NF accumulations could lead to MN degeneration remains unknown. To assess NF accumulations and study the impact on MNs, we compared MNs derived from induced pluripotent stem cells (iPSC) of patients carrying mutations in C9orf72, SOD1 and TARDBP genes, the three main ALS genetic causes. We show that in all mutant MNs, light NF (NF-L) chains rapidly accumulate in MN soma, while the phosphorylated heavy/medium NF (pNF-M/H) chains pile up in axonal proximal regions of only C9orf72 and SOD1 MNs. Excitability abnormalities were also only observed in these latter MNs. We demonstrate that the integrity of the MN axonal initial segment (AIS), the region of action potential initiation and responsible for maintaining axonal integrity, is impaired in the presence of pNF-M/H accumulations in C9orf72 and SOD1 MNs. We establish a strong correlation between these pNF-M/H accumulations, an AIS distal shift, increased axonal calibers and modified repartition of sodium channels. The results expand our understanding of how NF accumulation could dysregulate components of the axonal cytoskeleton and disrupt MN homeostasis. With recent cumulative evidence that AIS alterations are implicated in different brain diseases, preserving AIS integrity could have important therapeutic implications for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Humans , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Intermediate Filaments , Superoxide Dismutase-1/genetics , C9orf72 Protein/genetics , Motor Neurons/pathology
4.
Int J Mol Sci ; 23(10)2022 May 19.
Article in English | MEDLINE | ID: mdl-35628504

ABSTRACT

Mutations in profilin 1 (PFN1) have been identified in rare familial cases of Amyotrophic Lateral Sclerosis (ALS). PFN1 is involved in multiple pathways that could intervene in ALS pathology. However, the specific pathogenic role of PFN1 mutations in ALS is still not fully understood. We hypothesized that PFN1 could play a role in regulating autophagy pathways and that PFN1 mutations could disrupt this function. We used patient cells (lymphoblasts) or tissue (post-mortem) carrying PFN1 mutations (M114T and E117G), and designed experimental models expressing wild-type or mutant PFN1 (cell lines and novel PFN1 mice established by lentiviral transgenesis) to study the effects of PFN1 mutations on autophagic pathway markers. We observed no accumulation of PFN1 in the spinal cord of one E117G mutation carrier. Moreover, in patient lymphoblasts and transfected cell lines, the M114T mutant PFN1 protein was unstable and deregulated the RAB9-mediated alternative autophagy pathway involved in the clearance of damaged mitochondria. In vivo, motor neurons expressing M114T mutant PFN1 showed mitochondrial abnormalities. Our results demonstrate that the M114T PFN1 mutation is more deleterious than the E117G variant in patient cells and experimental models and suggest a role for the RAB9-dependent autophagic pathway in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Profilins , rab GTP-Binding Proteins , Amyotrophic Lateral Sclerosis/metabolism , Animals , Autophagy/genetics , Homeostasis , Humans , Mice , Mitochondria/metabolism , Mutation , Profilins/genetics , Profilins/metabolism , rab GTP-Binding Proteins/metabolism
5.
J Neurol Neurosurg Psychiatry ; 92(9): 942-949, 2021 09.
Article in English | MEDLINE | ID: mdl-33785574

ABSTRACT

OBJECTIVE: Mutations in superoxide dismutase 1 gene (SOD1), encoding copper/zinc superoxide dismutase protein, are the second most frequent high penetrant genetic cause for amyotrophic lateral sclerosis (ALS) motor neuron disease in populations of European descent. More than 200 missense variants are reported along the SOD1 protein. To limit the production of these aberrant and deleterious SOD1 species, antisense oligonucleotide approaches have recently emerged and showed promising effects in clinical trials. To offer the possibility to any patient with SOD1-ALS to benefit of such a gene therapy, it is necessary to ascertain whether any variant of unknown significance (VUS), detected for example in SOD1 non-coding sequences, is pathogenic. METHODS: We analysed SOD1 mutation distribution after SOD1 sequencing in a large cohort of 470 French familial ALS (fALS) index cases. RESULTS: We identified a total of 27 SOD1 variants in 38 families including two SOD1 variants located in nearsplice or intronic regions of the gene. The pathogenicity of the c.358-10T>G nearsplice SOD1 variant was corroborated based on its high frequency (as the second most frequent SOD1 variant) in French fALS, the segregation analysis confirmed in eight affected members of a large pedigree, the typical SOD1-related phenotype observed (with lower limb onset and prominent lower motor neuron involvement), and findings on postmortem tissues showing SOD1 misaccumulation. CONCLUSIONS: Our results highlighted nearsplice/intronic mutations in SOD1 are responsible for a significant portion of French fALS and suggested the systematic analysis of the SOD1 mRNA sequence could become the method of choice for SOD1 screening, not to miss these specific cases.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Mutation , Pedigree , Superoxide Dismutase-1/genetics , Adult , Aged , Aged, 80 and over , DNA Mutational Analysis , Female , Genetic Testing , Genetic Therapy , Humans , Male , Middle Aged , Phenotype
6.
Neurobiol Aging ; 101: 181-186, 2021 05.
Article in English | MEDLINE | ID: mdl-33626479

ABSTRACT

Neuroinflammation is a hallmark of Amyotrophic Lateral Sclerosis (ALS) in hSOD1G93A mouse models where microglial cells contribute to the progressive motor neuron degenerative process. S100-A8 and S100-A9 (also known as MRP8 and MRP14, respectively) are cytoplasmic proteins expressed by inflammatory myeloid cells, including microglia and macrophages. Mainly acting as a heterodimer, S100-A8/A9, when secreted, can activate Toll-like Receptor 4 on immune cells, leading to deleterious proinflammatory cytokine production. Deletion of S100a9 in Alzheimer's disease mouse models showed a positive outcome, reducing pathology. We now assessed its role in ALS. Unexpectedly, our results show that deleting S100a9 in hSOD1G93A ALS mice had no impact on mouse survival, but rather accelerated symptoms with no impact on microglial activation and motor neuron survival, suggesting that blocking S100-A9 would not be a valuable strategy for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/mortality , Calgranulin B/genetics , Gene Deletion , Histone-Lysine N-Methyltransferase , Superoxide Dismutase-1 , Animals , Calgranulin B/metabolism , Disease Models, Animal , Histone-Lysine N-Methyltransferase/metabolism , Inflammation , Mice , Microglia/metabolism , Superoxide Dismutase-1/metabolism , Survival
7.
Exp Neurol ; 335: 113496, 2021 01.
Article in English | MEDLINE | ID: mdl-33038415

ABSTRACT

Mutations in the genes TARDBP (encoding the TDP-43 protein) and TBK1 can cause familial ALS. Neuronal cytoplasmatic accumulations of the misfolded, hyperphosphorylated RNA-binding protein TDP-43 are the pathological hallmark of most ALS cases and have been suggested to be a key aspect of ALS pathogenesis. Pharmacological induction of autophagy has been shown to reduce mutant TDP-43 aggregates and alleviate motor deficits in mice. TBK1 is exemplary for several other ALS genes that regulate autophagy. Consequently, we employed double mutant mice with both a heterozygous Tbk1 deletion and transgenic expression of human TDP-43G298S to test the hypothesis that impaired autophagy reduces intracellular clearance of an aggregation-prone protein and enhances toxicity of mutant TDP-43. The heterozygous deletion of Tbk1 did not change expression or cellular distribution of TDP-43 protein, motor neuron loss or reactive gliosis in the spinal cord of double-mutant mice at the age of 19 months. However, it aggravated muscle denervation and, albeit to a small and variable degree, motor dysfunction in TDP-43G298S transgenic mice, as similarly observed in the SOD1G93A transgenic mouse model for ALS before. Conclusively, our findings suggest that TBK1 mutations can affect the neuromuscular synapse.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , DNA-Binding Proteins/genetics , Neuromuscular Junction/pathology , Protein Serine-Threonine Kinases/genetics , Animals , Gene Deletion , Gliosis/genetics , Humans , Immunohistochemistry , Mice , Mice, Knockout , Mice, Transgenic , Motor Neurons/pathology , Movement Disorders/genetics , Movement Disorders/pathology , Muscle Denervation , Mutation , Spinal Cord/pathology
8.
Brain Commun ; 2(2): fcaa133, 2020.
Article in English | MEDLINE | ID: mdl-33005894

ABSTRACT

Loss-of-function mutations in TANK-binding kinase 1 cause genetic amyotrophic lateral sclerosis and frontotemporal dementia. Consistent with incomplete penetrance in humans, haploinsufficiency of TANK-binding kinase 1 did not cause motor symptoms in mice up to 7 months of age in a previous study. Ageing is the strongest risk factor for neurodegenerative diseases. Hypothesizing that age-dependent processes together with haploinsufficiency of TANK-binding kinase 1 could create a double hit situation that may trigger neurodegeneration, we examined mice with hemizygous deletion of Tbk1 (Tbk1 +/- mice) and wild-type siblings up to 22 months. Compared to 4-month old mice, aged, 22-month old mice showed glial activation, deposition of motoneuronal p62 aggregates, muscular denervation and profound transcriptomic alterations in a set of 800 immune-related genes upon ageing. However, we did not observe differences regarding these measures between aged Tbk1 +/- and wild-type siblings. High age did also not precipitate TAR DNA-binding protein 43 aggregation, neurodegeneration or a neurological phenotype in Tbk1+/ - mice. In young Tbk1+/ - mice, however, we found the CNS immune gene expression pattern shifted towards the age-dependent immune system dysregulation observed in old mice. Conclusively, ageing is not sufficient to precipitate an amyotrophic lateral sclerosis or frontotemporal dementia phenotype or spinal or cortical neurodegeneration in a model of Tbk1 haploinsufficiency. We hypothesize that the consequences of Tbk1 haploinsufficiency may be highly context-dependent and require a specific synergistic stress stimulus to be uncovered.

9.
Nat Neurosci ; 23(11): 1339-1351, 2020 11.
Article in English | MEDLINE | ID: mdl-33077946

ABSTRACT

Microglia and peripheral macrophages have both been implicated in amyotrophic lateral sclerosis (ALS), although their respective roles have yet to be determined. We now show that macrophages along peripheral motor neuron axons in mouse models and patients with ALS react to neurodegeneration. In ALS mice, peripheral myeloid cell infiltration into the spinal cord was limited and depended on disease duration. Targeted gene modulation of the reactive oxygen species pathway in peripheral myeloid cells of ALS mice, using cell replacement, reduced both peripheral macrophage and microglial activation, delayed symptoms and increased survival. Transcriptomics revealed that sciatic nerve macrophages and microglia reacted differently to neurodegeneration, with abrupt temporal changes in macrophages and progressive, unidirectional activation in microglia. Modifying peripheral macrophages suppressed proinflammatory microglial responses, with a shift toward neuronal support. Thus, modifying macrophages at the periphery has the capacity to influence disease progression and may be of therapeutic value for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/immunology , Axons/immunology , Macrophages/immunology , Microglia/immunology , Motor Neurons/immunology , Sciatic Nerve/immunology , Adult , Aged , Amyotrophic Lateral Sclerosis/metabolism , Animals , Female , Humans , Macrophages/metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Microglia/metabolism , Middle Aged , Motor Neurons/metabolism , Sciatic Nerve/metabolism , Spinal Cord/immunology , Spinal Cord/metabolism
10.
J Exp Med ; 217(11)2020 11 02.
Article in English | MEDLINE | ID: mdl-32648893

ABSTRACT

Wallerian degeneration (WD) is a process of autonomous distal degeneration of axons upon injury. Macrophages (MPs) of the peripheral nervous system (PNS) are the main cellular agent controlling this process. Some evidence suggests that resident PNS-MPs along with MPs of hematogenous origin may be involved, but whether these two subsets exert distinct functions is unknown. Combining MP-designed fluorescent reporter mice and coherent anti-Stokes Raman scattering (CARS) imaging of the sciatic nerve, we deciphered the spatiotemporal choreography of resident and recently recruited MPs after injury and unveiled distinct functions of these subsets, with recruited MPs being responsible for efficient myelin stripping and clearance and resident MPs being involved in axonal regrowth. This work provides clues to tackle selectively cellular processes involved in neurodegenerative diseases.


Subject(s)
Macrophages/immunology , Wallerian Degeneration/diagnostic imaging , Wallerian Degeneration/immunology , Animals , Axons/physiology , Disease Models, Animal , Female , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myelin Sheath/physiology , Nonlinear Optical Microscopy , Remyelination/genetics , Sciatic Nerve/diagnostic imaging , Sciatic Nerve/immunology , Sciatic Nerve/injuries , Transcriptome
11.
Curr Opin Neurol ; 32(5): 764-770, 2019 10.
Article in English | MEDLINE | ID: mdl-31306211

ABSTRACT

PURPOSE OF REVIEW: Amyotrophic lateral sclerosis (ALS) is a degenerative motor neuron disease with a strong neuroinflammatory component. This review summarizes how the connection between neurodegeneration and the immune system is strengthened by new discoveries from ALS genetics and the analysis of subpopulations of immune cells in ALS. RECENT FINDINGS: Recent genes identified in ALS encode for proteins with direct immune roles, which when mutated lead to deregulation of immune functions, potentially influencing the disease. Although neuroinflammation in the central nervous system (CNS) of ALS patients has been well documented, new evidence suggests also direct malfunctions of immune cells in the CNS and at the periphery. Although CD4+ T-regulatory lymphocytes are protective in ALS, their number and function are altered over the disease course. CD8+ T cells are detrimental for motor neurons in the CNS but show some protective roles at the periphery. Similarly, the presence of mast cells in muscles of ALS models and patients and impairments of monocyte functions reveal potential new players in ALS disease progression. SUMMARY: Although motor neuron degeneration is considered the prime event in ALS, dysfunctions in immune processes can impact the disease, highlighting that targeting specific immune components is a strategy for developing biomarkers and ultimately new drugs.


Subject(s)
Myasthenic Syndromes, Congenital , Animals , Humans , Myasthenic Syndromes, Congenital/drug therapy , Myasthenic Syndromes, Congenital/genetics , Myasthenic Syndromes, Congenital/pathology , Myasthenic Syndromes, Congenital/physiopathology
12.
Acta Neuropathol ; 138(1): 123-145, 2019 07.
Article in English | MEDLINE | ID: mdl-30874923

ABSTRACT

Recently, we provided genetic basis showing that mitochondrial dysfunction can trigger motor neuron degeneration, through identification of CHCHD10 encoding a mitochondrial protein. We reported patients, carrying the p.Ser59Leu heterozygous mutation in CHCHD10, from a large family with a mitochondrial myopathy associated with motor neuron disease (MND). Rapidly, our group and others reported CHCHD10 mutations in amyotrophic lateral sclerosis (ALS), frontotemporal dementia-ALS and other neurodegenerative diseases. Here, we generated knock-in (KI) mice, carrying the p.Ser59Leu mutation, that mimic the mitochondrial myopathy with mtDNA instability displayed by the patients from our original family. Before 14 months of age, all KI mice developed a fatal mitochondrial cardiomyopathy associated with enhanced mitophagy. CHCHD10S59L/+ mice also displayed neuromuscular junction (NMJ) and motor neuron degeneration with hyper-fragmentation of the motor end plate and moderate but significant motor neuron loss in lumbar spinal cord at the end stage of the disease. At this stage, we observed TDP-43 cytoplasmic aggregates in spinal neurons. We also showed that motor neurons differentiated from human iPSC carrying the p.Ser59Leu mutation were much more sensitive to Staurosporine or glutamate-induced caspase activation than control cells. These data confirm that mitochondrial deficiency associated with CHCHD10 mutations can be at the origin of MND. CHCHD10 is highly expressed in the NMJ post-synaptic part. Importantly, the fragmentation of the motor end plate was associated with abnormal CHCHD10 expression that was also observed closed to NMJs which were morphologically normal. Furthermore, we found OXPHOS deficiency in muscle of CHCHD10S59L/+ mice at 3 months of age in the absence of neuron loss in spinal cord. Our data show that the pathological effects of the p.Ser59Leu mutation target muscle prior to NMJ and motor neurons. They likely lead to OXPHOS deficiency, loss of cristae junctions and destabilization of internal membrane structure within mitochondria at motor end plate of NMJ, impairing neurotransmission. These data are in favor with a key role for muscle in MND associated with CHCHD10 mutations.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Frontotemporal Dementia/metabolism , Mitochondria/pathology , Motor Neurons/metabolism , Neuromuscular Junction/metabolism , Amyotrophic Lateral Sclerosis/genetics , Animals , Cell Death/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Mice, Transgenic , Mitochondrial Proteins/metabolism , Nerve Degeneration/genetics , Nerve Degeneration/pathology , Phenotype
13.
J Exp Med ; 216(2): 267-278, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30635357

ABSTRACT

Heterozygous loss-of-function mutations of TANK-binding kinase 1 (TBK1 ) cause familial ALS, yet downstream mechanisms of TBK1 mutations remained elusive. TBK1 is a pleiotropic kinase involved in the regulation of selective autophagy and inflammation. We show that heterozygous Tbk1 deletion alone does not lead to signs of motoneuron degeneration or disturbed autophagy in mice during a 200-d observation period. Surprisingly, however, hemizygous deletion of Tbk1 inversely modulates early and late disease phases in mice additionally overexpressing ALS-linked SOD1G93A , which represents a "second hit" that induces both neuroinflammation and proteostatic dysregulation. At the early stage, heterozygous Tbk1 deletion impairs autophagy in motoneurons and prepones both the clinical onset and muscular denervation in SOD1G93A/Tbk1+/- mice. At the late disease stage, however, it significantly alleviates microglial neuroinflammation, decelerates disease progression, and extends survival. Our results indicate a profound effect of TBK1 on brain inflammatory cells under pro-inflammatory conditions and point to a complex, two-edged role of TBK1 in SOD1-linked ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , Brain , Gene Deletion , Motor Neurons , Protein Serine-Threonine Kinases , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Autophagic Cell Death/genetics , Brain/metabolism , Brain/pathology , Loss of Function Mutation , Mice , Mice, Knockout , Microglia/metabolism , Microglia/pathology , Motor Neurons/metabolism , Motor Neurons/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
14.
Free Radic Biol Med ; 108: 236-246, 2017 07.
Article in English | MEDLINE | ID: mdl-28365360

ABSTRACT

Compelling evidence suggests that mitochondrial dysfunction leading to reactive oxygen species (ROS) production and protein oxidation could represent a critical event in the pathogenesis of Parkinson's disease (PD). Pioneering studies have shown that the mitochondrial matrix contains the Lon protease, which degrades oxidized, dysfunctional, and misfolded protein. Using the PD animal model of 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication in mice, we showed that Lon protease expression increased in the ventral mesencephalon of intoxicated animals, concomitantly with the appearance of oxidized proteins and dopaminergic cell loss. In addition, we report that Lon is inactivated by ROS. Moreover, proteomic experiments provide evidence of carbonylation in α-ketoglutarate dehydrogenase (KGDH), aconitase or subunits of respiratory chain complexes. Lon protease inactivation upon MPTP treatment in mice raises the possibility that Lon protease dysfunction is an early event in the pathogenesis of PD.


Subject(s)
Dopaminergic Neurons/metabolism , Mesencephalon/pathology , Mitochondria/metabolism , Parkinson Disease/metabolism , Protease La/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/administration & dosage , Aconitate Hydratase/metabolism , Animals , Cell Death , Disease Models, Animal , Dopaminergic Neurons/pathology , Electron Transport Chain Complex Proteins/metabolism , Humans , Ketoglutarate Dehydrogenase Complex/metabolism , Male , Mice , Mice, Inbred C57BL , Oxidation-Reduction , Proteomics , Reactive Oxygen Species/metabolism , Unfolded Protein Response
15.
J Neuroinflammation ; 14(1): 60, 2017 03 21.
Article in English | MEDLINE | ID: mdl-28320442

ABSTRACT

BACKGROUND: Evidence from mice suggests that brain infiltrating immune cells contribute to neurodegeneration, and we previously identified a deleterious lymphocyte infiltration in Parkinson's disease mice. However, this remains controversial for monocytes, due to artifact-prone techniques used to distinguish them from microglia. Our aim was to reassess this open question, by taking advantage of the recent recognition that chemokine receptors CCR2 and CX3CR1 can differentiate between inflammatory monocytes and microglia, enabling to test whether CCR2+ monocytes infiltrate the brain during dopaminergic (DA) neurodegeneration and whether they contribute to neuronal death. This revealed unexpected insights into possible regulation of monocyte-attracting CCL2 induction. METHODS: We used acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mice and assessed monocyte infiltration by combining laser microdissection-guided chemokine RNA profiling of the substantia nigra (SN) with immunohistochemistry and CCR2-GFP reporter mice. To determine contribution to neuronal loss, we used CCR2-deletion and CCL2-overexpression, to reduce and increase CCR2+ monocyte infiltration, and CX3CR1-deletion to assess a potential implication in CCL2 regulation. RESULTS: Nigral chemokine profiling revealed early CCL2/7/12-CCR2 axis induction, suggesting monocyte infiltration in MPTP mice. CCL2 protein showed early peak induction in nigral astrocytes, while CCR2-GFP mice revealed early but limited nigral monocyte infiltration. However, blocking infiltration by CCR2 deletion did not influence DA neuronal loss. In contrast, transgenic astrocytic CCL2 over-induction increased CCR2+ monocyte infiltration and DA neuronal loss in MPTP mice. Surprisingly, CCL2 over-induction was also detected in MPTP intoxicated CX3CR1-deleted mice, which are known to present increased DA neuronal loss. Importantly, CX3CR1/CCL2 double-deletion suggested that increased neurotoxicity was driven by astrocytic CCL2 over-induction. CONCLUSIONS: We show that CCR2+ monocytes infiltrate the affected CNS, but at the level observed in acute MPTP mice, this does not contribute to DA neuronal loss. In contrast, the underlying astrocytic CCL2 induction seemed to be tightly controled, as already moderate CCL2 over-induction led to increased neurotoxicity in MPTP mice, likely due to the increased CCR2+ monocyte infiltration. Importantly, we found evidence suggesting that during DA neurodegeneration, this control was mediated by microglial CX3CR1 signaling, which protects against such neurotoxic CCL2 over-induction by astrocytes, thus hinting at an endogenous mechanism to limit neurotoxic effects of the CCL2-CCR2 axis.


Subject(s)
Astrocytes/metabolism , Cell Movement/drug effects , Chemokine CCL2/metabolism , MPTP Poisoning/pathology , Microglia/metabolism , Receptors, Interleukin-8A/deficiency , Animals , Astrocytes/drug effects , CD11b Antigen/metabolism , Calcium-Binding Proteins/metabolism , Cell Movement/genetics , Disease Models, Animal , Gene Expression Regulation/drug effects , Lipopolysaccharides/pharmacology , MPTP Poisoning/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/metabolism , Microglia/drug effects , Monocytes/drug effects , Monocytes/metabolism , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Receptors, Interleukin-8A/genetics , Substantia Nigra/drug effects , Substantia Nigra/pathology , Time Factors , Tyrosine 3-Monooxygenase/metabolism
16.
Brain ; 138(Pt 1): 53-68, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25384799

ABSTRACT

Amyotrophic lateral sclerosis is the most common adult-onset motor neuron disease and evidence from mice expressing amyotrophic lateral sclerosis-causing SOD1 mutations suggest that neurodegeneration is a non-cell autonomous process where microglial cells influence disease progression. However, microglial-derived neurotoxic factors still remain largely unidentified in amyotrophic lateral sclerosis. With excitotoxicity being a major mechanism proposed to cause motor neuron death in amyotrophic lateral sclerosis, our hypothesis was that excessive glutamate release by activated microglia through their system [Formula: see text] (a cystine/glutamate antiporter with the specific subunit xCT/Slc7a11) could contribute to neurodegeneration. Here we show that xCT expression is enriched in microglia compared to total mouse spinal cord and absent from motor neurons. Activated microglia induced xCT expression and during disease, xCT levels were increased in both spinal cord and isolated microglia from mutant SOD1 amyotrophic lateral sclerosis mice. Expression of xCT was also detectable in spinal cord post-mortem tissues of patients with amyotrophic lateral sclerosis and correlated with increased inflammation. Genetic deletion of xCT in mice demonstrated that activated microglia released glutamate mainly through system [Formula: see text]. Interestingly, xCT deletion also led to decreased production of specific microglial pro-inflammatory/neurotoxic factors including nitric oxide, TNFa and IL6, whereas expression of anti-inflammatory/neuroprotective markers such as Ym1/Chil3 were increased, indicating that xCT regulates microglial functions. In amyotrophic lateral sclerosis mice, xCT deletion surprisingly led to earlier symptom onset but, importantly, this was followed by a significantly slowed progressive disease phase, which resulted in more surviving motor neurons. These results are consistent with a deleterious contribution of microglial-derived glutamate during symptomatic disease. Therefore, we show that system [Formula: see text] participates in microglial reactivity and modulates amyotrophic lateral sclerosis motor neuron degeneration, revealing system [Formula: see text] inactivation, as a potential approach to slow amyotrophic lateral sclerosis disease progression after onset of clinical symptoms.


Subject(s)
Amino Acid Transport System ASC/deficiency , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Microglia/metabolism , Amyotrophic Lateral Sclerosis/mortality , Animals , Animals, Newborn , Cerebral Cortex/cytology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Glutathione/metabolism , Humans , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/drug effects , Motor Neurons/drug effects , Motor Neurons/metabolism , Mutation/genetics , Nitric Oxide/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase-1
18.
Proc Natl Acad Sci U S A ; 110(46): E4385-92, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24170856

ABSTRACT

Accumulating evidence from mice expressing ALS-causing mutations in superoxide dismutase (SOD1) has implicated pathological immune responses in motor neuron degeneration. This includes microglial activation, lymphocyte infiltration, and the induction of C1q, the initiating component of the classic complement system that is the protein-based arm of the innate immune response, in motor neurons of multiple ALS mouse models expressing dismutase active or inactive SOD1 mutants. Robust induction early in disease course is now identified for multiple complement components (including C1q, C4, and C3) in spinal cords of SOD1 mutant-expressing mice, consistent with initial intraneuronal C1q induction, followed by global activation of the complement pathway. We now test if this activation is a mechanistic contributor to disease. Deletion of the C1q gene in mice expressing an ALS-causing mutant in SOD1 to eliminate C1q induction, and complement cascade activation that follows from it, is demonstrated to produce changes in microglial morphology accompanied by enhanced loss, not retention, of synaptic densities during disease. C1q-dependent synaptic loss is shown to be especially prominent for cholinergic C-bouton nerve terminal input onto motor neurons in affected C1q-deleted SOD1 mutant mice. Nevertheless, overall onset and progression of disease are unaffected in C1q- and C3-deleted ALS mice, thus establishing that C1q induction and classic or alternative complement pathway activation do not contribute significantly to SOD1 mutant-mediated ALS pathogenesis in mice.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/immunology , Complement C1q/metabolism , Complement Pathway, Classical/immunology , Motor Neurons/metabolism , Superoxide Dismutase/genetics , Animals , Complement C1q/genetics , Gene Deletion , Immunohistochemistry , Mice , Mice, Knockout , Microglia/cytology , Motor Neurons/immunology , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Spinal Cord/metabolism , Spinal Cord/pathology , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Survival Analysis
19.
PLoS One ; 6(7): e22031, 2011.
Article in English | MEDLINE | ID: mdl-21779368

ABSTRACT

Mutations in superoxide dismutase (SOD1) are causative for inherited amyotrophic lateral sclerosis. A proportion of SOD1 mutant protein is misfolded onto the cytoplasmic face of mitochondria in one or more spinal cord cell types. By construction of mice in which mitochondrially targeted enhanced green fluorescent protein is selectively expressed in motor neurons, we demonstrate that axonal mitochondria of motor neurons are primary in vivo targets for misfolded SOD1. Mutant SOD1 alters axonal mitochondrial morphology and distribution, with dismutase active SOD1 causing mitochondrial clustering at the proximal side of Schmidt-Lanterman incisures within motor axons and dismutase inactive SOD1 producing aberrantly elongated axonal mitochondria beginning pre-symptomatically and increasing in severity as disease progresses. Somal mitochondria are altered by mutant SOD1, with loss of the characteristic cylindrical, networked morphology and its replacement by a less elongated, more spherical shape. These data indicate that mutant SOD1 binding to mitochondria disrupts normal mitochondrial distribution and size homeostasis as early pathogenic features of SOD1 mutant-mediated ALS.


Subject(s)
Mitochondria/metabolism , Motor Neurons/metabolism , Superoxide Dismutase/metabolism , Animals , Fluorescent Antibody Technique , Immunoblotting , Mice , Mice, Transgenic , Protein Folding , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , Superoxide Dismutase-1
20.
Proc Natl Acad Sci U S A ; 106(11): 4465-70, 2009 Mar 17.
Article in English | MEDLINE | ID: mdl-19251638

ABSTRACT

Neurodegeneration in an inherited form of ALS is non-cell-autonomous, with ALS-causing mutant SOD1 damage developed within multiple cell types. Selective inactivation within motor neurons of an ubiquitously expressed mutant SOD1 gene has demonstrated that mutant damage within motor neurons is a determinant of disease initiation, whereas mutant synthesis within neighboring astrocytes or microglia accelerates disease progression. We now report the surprising finding that diminished synthesis (by 70%) within Schwann cells of a fully dismutase active ALS-linked mutant (SOD1(G37R)) significantly accelerates disease progression, accompanied by reduction of insulin-like growth factor 1 (IGF-1) in nerves. Coupled with shorter disease duration in mouse models caused by dismutase inactive versus dismutase active SOD1 mutants, our findings implicate an oxidative cascade during disease progression that is triggered within axon ensheathing Schwann cells and that can be ameliorated by elevated dismutase activity. Thus, therapeutic down-regulation of dismutase active mutant SOD1 in familial forms of ALS should be targeted away from Schwann cells.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Schwann Cells/metabolism , Superoxide Dismutase/biosynthesis , Amyotrophic Lateral Sclerosis/prevention & control , Animals , Disease Models, Animal , Disease Progression , Down-Regulation , Insulin-Like Growth Factor I/biosynthesis , Mice , Neurons/metabolism , Superoxide Dismutase/physiology , Superoxide Dismutase-1
SELECTION OF CITATIONS
SEARCH DETAIL
...