Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Appl Opt Mater ; 1(7): 1343-1349, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37533664

ABSTRACT

Optical microcavities grant manipulation over light-matter interactions and light propagation, enabling the fabrication of foundational optical and optoelectronic components. However, the materials used for high-performing systems, mostly bulk inorganics, are typically costly, and their processing is hardly scalable. In this work, we present an alternative way to fabricate planar optical resonators via solely solution processing while approaching the performances of conventional systems. Here, we couple fully solution-processed high dielectric contrast inorganic Bragg mirrors obtained by sol-gel deposition with the remarkable photoluminescence properties of CsPbBr3 perovskite nanocrystals. The approach yields microcavities with a quality factor of ∼220, which is a record value for solution-processed inorganic structures, and a strong emission redistribution resulting in a 3-fold directional intensity enhancement.

2.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 78(Pt 3 Pt 2): 425-435, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35702960

ABSTRACT

The crystal structures of (CH3NH3)2Cu(Cl1-xBrx)4 compounds have been investigated by means of synchrotron powder X-ray diffraction and pair distribution function analysis at room temperature. As a result, new insights are gained about the structural properties of these compounds, suggesting a monoclinic symmetry (space group No. 14: P21/c - C_{2h}^{5}) induced by the co-operative orbital ordering produced by the Jahn-Teller distortion characterizing the 3d9 Cu2+ ion. In contrast to previous studies, a significant amount of vacancies is found at halogen positions, a feature that can be likely ascribed to the synthesis technique adopted in the present study. Br atoms preferentially occupy axial positions, likely on account of reduced steric hindrance at these sites.

3.
ACS Energy Lett ; 7(5): 1850-1858, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35601630

ABSTRACT

Simultaneously achieving both broad absorption and sharp emission in the near-infrared (NIR) is challenging. Coupling of an efficient absorber such as lead halide perovskites to lanthanide emissive species is a promising way to meet the demands for visible-to-NIR spectral conversion. However, lead-based perovskite sensitizers suffer from relatively narrow absorption in the visible range, poor stability, and toxicity. Herein, we introduce a downshifting configuration based on lead-free cesium manganese bromide nanocrystals acting as broad visible absorbers coupled to sharp emission in the NIR-I and NIR-II spectral regions. To achieve this, we synthesized CsMnBr3 and Cs3MnBr5 nanocrystals and attempted to dope them with a series of lanthanides, achieving success only with CsMnBr3. The correlation of the lanthanide emission to the CsMnBr3 visible absorption was confirmed with steady-state excitation spectra and time-resolved photoluminescence measurements, whereas the mechanism of downconversion from the CsMnBr3 matrix to the lanthanides was understood by density functional theory calculations. This study shows that lead-free metal halides with an appropriate phase are effective sensitizers for lanthanides and offer a route to efficient downshifting applications.

4.
Nanoscale ; 14(2): 305-311, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34913460

ABSTRACT

Layered double perovskites are currently being investigated as emerging halide-based materials for optoelectronic applications. Herein, we present the synthesis of Cs4MnxCd1-xSb2Cl12 (0 ≤ x ≤ 1) nanocrystals (NCs). X-ray powder diffraction evidences the retention of the same crystal structure for all the inspected compositions; transmission electron microscopy revealed monodisperse particles with a mean size between 10.7 nm and 12.7 nm. The absorption spectra are mostly determined by transitions related to Sb3+, whereas Mn2+ induced a red emission in the 625-650 nm range. The photoluminescence emission intensity and position vary with the Mn2+ content and reach the maximum for the composition with x = 0.12. Finally, we demonstrate that the photoluminescence quantum yield of the latter NCs was increased from 0.3% to 3.9% through a post-synthesis treatment with ammonium thiocyanate. The present work expands the knowledge of colloidal layered double perovskite nanocrystals, stimulating future investigations of this emerging class of materials.

5.
ACS Nano ; 15(11): 17729-17737, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34668701

ABSTRACT

Metal halide perovskites are one of the most investigated materials in optoelectronics, with their lead-based counterparts being renowned for their enhanced optoelectronic performance. The 3D CsPbX3 structure has set the standard with many studies currently attempting to substitute lead with other metals while retaining the properties of this material. This effort has led to the fabrication of metal halides with lower dimensionality, wherein particular 2D layered perovskite structures have captured attention as inspiration for the next generation of colloidal semiconductors. Here we report the synthesis of the Ruddlesden-Popper Cs2CdCl4:Sb3+ phase as colloidal nanoplatelets (NPs) using a facile hot injection approach under atmospheric conditions. Through strict adjustment of the synthesis parameters with emphasis on the ligand ratio, we obtained NPs with a relatively uniform size and good morphological control. The particles were characterized through transmission electron microscopy, synchrotron X-ray diffraction, and pair distribution function analysis. The spectroscopic characterization revealed most strikingly an intense cyan emission under UV excitation with a measured PLQY of ∼20%. The emission was attributed to the Sb3+-doping within the structure.

6.
Nanoscale ; 13(17): 8118-8125, 2021 May 06.
Article in English | MEDLINE | ID: mdl-33881122

ABSTRACT

The accessible emission spectral range of lead halide perovskite (LHP) CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) has remained so far limited to wavelengths below 1 µm, corresponding to the emission line of Yb3+, whereas the direct sensitization of other near-infrared (NIR) emitting lanthanide ions is unviable. Herein, we present a general strategy to enable intense NIR emission from Er3+ at ∼1.5 µm, Ho3+ at ∼1.0 µm and Nd3+ at ∼1.06 µm through a Mn2+-mediated energy-transfer pathway. Steady-state and time-resolved photoluminescence studies show that energy-transfer efficiencies of about 39%, 35% and 70% from Mn2+ to Er3+, Ho3+ and Nd3+ are obtained, leading to photoluminescence quantum yields of ∼0.8%, ∼0.7% and ∼3%, respectively. This work provides guidance on constructing energy-transfer pathways in semiconductors and opens new perspectives for the development of lanthanide-functionalized LHPs as promising materials for optoelectronic devices operating in the NIR region.

7.
J Am Chem Soc ; 140(40): 12989-12995, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30198712

ABSTRACT

We show here the first colloidal synthesis of double perovskite Cs2AgInCl6 nanocrystals (NCs) with a control over their size distribution. In our approach, metal carboxylate precursors and ligands (oleylamine and oleic acid) are dissolved in diphenyl ether and reacted at 105 °C with benzoyl chloride. The resulting Cs2AgInCl6 NCs exhibit the expected double perovskite crystal structure, are stable under air, and show a broad spectrum white photoluminescence (PL) with quantum yield of ∼1.6 ± 1%. The optical properties of these NCs were improved by synthesizing Mn-doped Cs2AgInCl6 NCs through the simple addition of Mn-acetate to the reaction mixture. The NC products were characterized by the same double perovskite crystal structure, and Mn doping levels up to 1.5%, as confirmed by elemental analyses. The effective incorporation of Mn ions inside Cs2AgInCl6 NCs was also proved by means of electron spin resonance spectroscopy. A bright orange emission characterized our Mn-doped Cs2AgInCl6 NCs with a PL quantum yield as high as ∼16 ± 4%.

8.
ACS Energy Lett ; 2(10): 2445-2448, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-29285525

ABSTRACT

Perovskite-related Cs4PbBr6 nanocrystals present a "zero-dimensional" crystalline structure where adjacent [PbBr6]4- octahedra do not share any corners. We show in this work that these nanocrystals can be converted into "three-dimensional" CsPbBr3 perovskites by extraction of CsBr. This conversion drastically changes the optoelectronic properties of the nanocrystals that become highly photoluminescent. The extraction of CsBr can be achieved either by thermal annealing (physical approach) or by chemical reaction with Prussian Blue (chemical approach). The former approach can be simply carried out on a dried film without addition of any chemicals but does not yield a full transformation. Instead, reaction with Prussian Blue in solution achieves a full transformation into the perovskite phase. This transformation was also verified on the iodide counterpart (Cs4PbI6).

9.
J Phys Chem C Nanomater Interfaces ; 121(21): 11956-11961, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-30546817

ABSTRACT

CsPbBr3 nanocrystals passivated with short molecular ligands and deposited on a substrate were annealed from room temperature to 400 °C in inert atmosphere. Chemical, structural, and morphological transformations were monitored in situ and ex situ by different techniques, while optoelectronic properties of the film were also assessed. Annealing at 100 °C resulted in a 1 order of magnitude increase in photocurrent and photoresponse as a result of partial sintering of the NCs and residual solvent evaporation. Beyond 150 °C the original orthorhombic NCs were partially transformed into tetragonal CsPb2Br5 crystals, due to the desorption of weakly bound propionic acid ligands. The photocurrent increased moderately until 300 °C although the photoresponse became slower as a result of the formation of surface trap states. Eventually, annealing beyond 350 °C removed the strongly bound butylamine ligands and reversed the transition to the original orthorhombic phase, with a loss of photocurrent due to the numerous defects induced by the stripping of the passivating butylamine.

10.
Materials (Basel) ; 9(9)2016 Sep 10.
Article in English | MEDLINE | ID: mdl-28773892

ABSTRACT

The enhancement of the photocatalytic activity of TiO2 nanoparticles (NPs), synthesized in the presence of a very small amount of magnetite (Fe3O4) nanoparticles, is here presented and discussed. From X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analyses, the crystallinity of TiO2 nanoparticles (NPs) seems to be affected by Fe3O4, acting as nano-seeds to improve the tetragonal TiO2 anatase structure with respect to the amorphous one. Photocatalytic activity data, i.e., the degradation of methylene blue and the Ofloxacin fluoroquinolone emerging pollutant, give evidence that the increased crystalline structure of the NPs, even if correlated to a reduced surface to mass ratio (with respect to commercial TiO2 NPs), enhances the performance of this type of catalyst. The achievement of a relatively well-defined crystal structure at low temperatures (Tmax = 150 °C), preventing the sintering of the TiO2 NPs and, thus, preserving the high density of active sites, seems to be the keystone to understand the obtained results.

11.
Materials (Basel) ; 9(10)2016 Oct 12.
Article in English | MEDLINE | ID: mdl-28773946

ABSTRACT

In this paper the results concerning the synthesis of magnetite (Fe3O4) nanoparticles (NPs), their functionalization using silane derivatives, such as (3-Aminopropyl)triethoxysilane (APTES) and (3-mercaptopropyl)trimethoxysilane (MPTMS), and their exhaustive morphological and physical characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersion X-ray spectrometer (EDX) analysis, AC magnetic susceptibility, UV-VIS and IR spectroscopy, and thermogravimetric (TGA) analyses are reported. Two different paths were adopted to achieve the desired functionalization: (1) the direct reaction between the functionalized organo-silane molecule and the surface of the magnetite nanoparticle; and (2) the use of an intermediate silica coating. Finally, the occurrence of both the functionalization with amino and thiol groups has been demonstrated by the reaction with ninhydrin and the capture of Au NPs, respectively.

12.
ACS Appl Mater Interfaces ; 6(20): 17346-51, 2014 Oct 22.
Article in English | MEDLINE | ID: mdl-25285437

ABSTRACT

A series of luminescent rare-earth ion-doped hexagonal II-type Gd oxycarbonate phosphors Gd2-xRExO2CO3 (RE = Eu(3+), Yb(3+), Dy(3+)) have been successfully synthesized by thermal decomposition of the corresponding mixed oxalates. The Yb(3+) doped Gd-oxycarbonate has evidenced a high persistent luminescence in the NIR region, that is independent from the temperature and makes this materials particular attractive as optical probes for bioimaging.


Subject(s)
Carbonates/chemistry , Lanthanoid Series Elements/chemistry , Luminescence , Spectroscopy, Near-Infrared , Gadolinium/chemistry , Temperature , Time Factors , X-Ray Diffraction , Ytterbium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...