Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
Cell Death Differ ; 23(4): 555-64, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25526092

ABSTRACT

Epigenetic changes on DNA and chromatin are implicated in cell differentiation and organogenesis. For the heart, distinct histone methylation profiles were recently linked to stage-specific gene expression programs during cardiac differentiation in vitro. However, the enzymes catalyzing these modifications and the genes regulated by them remain poorly defined. We therefore decided to identify the epigenetic enzymes that are potentially involved in cardiomyogenesis by analyzing the expression profile of the 85 genes encoding the epigenetic-related proteins in mouse cardiomyocytes (CMs), and then study how they affect gene expression during differentiation and maturation of this cell type. We show here with gene expression screening of epigenetic enzymes that the highly expressed H3 methyltransferase disruptor of telomeric silencing 1-like (DOT1L) drives a transitional pattern of di-methylation on H3 lysine 79 (H3K79) in CMs at different stages of differentiation in vitro and in vivo. Through a genome-wide chromatin-immunoprecipitation DNA-sequencing approach, we found H3K79me2 enriched at genes expressed during cardiac differentiation. Moreover, knockdown of Dot1L affected the expression of H3K79me2-enriched genes. Our results demonstrate that histone methylation, and in particular DOT1L-mediated H3K79me2 modification, drives cardiomyogenesis through the definition of a specific transcriptional landscape.


Subject(s)
Cell Differentiation , Gene Expression Regulation , Histones/metabolism , Methyltransferases/metabolism , Myocytes, Cardiac/metabolism , Protein Processing, Post-Translational , Animals , Cell Line , Histone-Lysine N-Methyltransferase , Histones/genetics , Methyltransferases/genetics , Mice
3.
Leukemia ; 28(9): 1861-71, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24561519

ABSTRACT

Relapsed/refractory Hodgkin's lymphoma (HL) is an unmet medical need requiring new therapeutic options. Interactions between the histone deacetylase inhibitor Givinostat and the RAF/MEK/ERK inhibitor Sorafenib were examined in HDLM-2 and L-540 HL cell lines. Exposure to Givinostat/Sorafenib induced a synergistic inhibition of cell growth (range, 70-80%) and a marked increase in cell death (up to 96%) due to increased H3 and H4 acetylation and strong mitochondrial injury. Gene expression profiling indicated that the synergistic effects of Givinostat/Sorafenib treatment are associated with the modulation of cell cycle and cell death pathways. Exposure to Givinostat/Sorafenib resulted in sustained production of reactive oxygen species (ROS) and activation of necroptotic cell death. The necroptosis inhibitor Necrostatin-1 prevented Givinostat/Sorafenib-induced ROS production, mitochondrial injury, activation of BH3-only protein BIM and cell death. Knockdown experiments identified BIM as a key signaling molecule that mediates Givinostat/Sorafenib-induced oxidative death of HL cells. Furthermore, in vivo xenograft studies demonstrated a 50% reduction in tumor burden (P<0.0001), a 5- to 15-fold increase in BIM expression (P < 0.0001) and a fourfold increase in tumor necrosis in Givinostat/Sorafenib-treated animals compared with mice that received single agents. These results provide a rationale for exploring Givinostat/Sorafenib combination in relapsed/refractory HL.


Subject(s)
Apoptosis Regulatory Proteins/physiology , Carbamates/administration & dosage , Histone Deacetylase Inhibitors/administration & dosage , Hodgkin Disease/drug therapy , Membrane Proteins/physiology , Niacinamide/analogs & derivatives , Phenylurea Compounds/administration & dosage , Proto-Oncogene Proteins/physiology , Reactive Oxygen Species/metabolism , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/genetics , Bcl-2-Like Protein 11 , Cell Line, Tumor , Hodgkin Disease/pathology , Humans , Imidazoles/pharmacology , Indoles/pharmacology , Membrane Proteins/genetics , Mice , Mice, SCID , Necrosis , Niacinamide/administration & dosage , Proto-Oncogene Proteins/genetics , Sorafenib , Up-Regulation , Xenograft Model Antitumor Assays
4.
Cell Death Dis ; 4: e863, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24136227

ABSTRACT

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) acts as an apoptosis inducer for cancer cells sparing non-tumor cell targets. However, several phase I/II clinical trials have shown limited benefits of this molecule. In the present work, we investigated whether cell susceptibility to TRAIL ligation could be due to the presence of TRAIL death receptors (DRs) 4 and 5 in membrane microdomains called lipid rafts. We performed a series of analyses, either by biochemical methods or fluorescence resonance energy transfer (FRET) technique, on normal cells (i.e. lymphocytes, fibroblasts, endothelial cells), on a panel of human cancer B-cell lines as well as on CD19(+) lymphocytes from patients with B-chronic lymphocytic leukemia, treated with different TRAIL ligands, that is, recombinant soluble TRAIL, specific agonistic antibodies to DR4 and DR5, or CD34(+) TRAIL-armed cells. Irrespective to the expression levels of DRs, a molecular interaction between ganglioside GM3, abundant in lymphoid cells, and DR4 was detected. This association was negligible in all non-transformed cells and was strictly related to TRAIL susceptibility of cancer cells. Interestingly, lipid raft disruptor methyl-beta-cyclodextrin abrogated this susceptibility, whereas the chemotherapic drug perifosine, which induced the recruitment of TRAIL into lipid microdomains, improved TRAIL-induced apoptosis. Accordingly, in ex vivo samples from patients with B-chronic lymphocytic leukemia, the constitutive embedding of DR4 in lipid microdomains was associated per se with cell death susceptibility, whereas its exclusion was associated with TRAIL resistance. These results provide a key mechanism for TRAIL sensitivity in B-cell malignances: the association, within lipid microdomains, of DR4 but not DR5, with a specific ganglioside, that is the monosialoganglioside GM3. On these bases we suggest that lipid microdomains could exert a catalytic role for DR4-mediated cell death and that an ex vivo quantitative FRET analysis could be predictive of cancer cell sensitivity to TRAIL.


Subject(s)
Apoptosis/drug effects , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Membrane Microdomains/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , TNF-Related Apoptosis-Inducing Ligand/pharmacology , Antibodies/pharmacology , Antigens, CD34/metabolism , Cell Line, Transformed , Cell Line, Tumor , Cell Separation , Flow Cytometry , Humans , Membrane Microdomains/drug effects , Receptors, TNF-Related Apoptosis-Inducing Ligand/agonists , Solubility
5.
Leukemia ; 27(8): 1677-87, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23360848

ABSTRACT

The effects of the Akt inhibitor perifosine and the RAF/MEK/ERK inhibitor sorafenib were investigated using two CD30(+)Hodgkin lymphoma cell lines (L-540 and HDLM-2) and the CD30(-)HD-MyZ histiocytic cell line. The combined perifosine/sorafenib treatment significantly inhibited mitogen-activated protein kinase and Akt phosphorylation in two of the three cell lines. Profiling of the responsive cell lines revealed that perifosine/sorafenib decreased the amplitude of transcriptional signatures that are associated with the cell cycle, DNA replication and cell death. Tribbles homolog 3 (TRIB3) was identified as the main mediator of the in vitro and in vivo antitumor activity of perifosine/sorafenib. Combined treatment compared with single agents significantly suppressed cell growth (40-80%, P<0.001), induced severe mitochondrial dysfunction and necroptotic cell death (up to 70%, P<0.0001) in a synergistic manner. Furthermore, in vivo xenograft studies demonstrated a significant reduction in tumor burden (P<0.0001), an increased survival time (81 vs 45 days, P<0.0001), an increased apoptosis (2- to 2.5-fold, P<0.0001) and necrosis (2- to 8-fold, P<0.0001) in perifosine/sorafenib-treated animals compared with mice receiving single agents. These data provide a rationale for clinical trials using perifosine/sorafenib combination.


Subject(s)
Apoptosis/drug effects , Hodgkin Disease/metabolism , Mitochondria/drug effects , Niacinamide/analogs & derivatives , Phenylurea Compounds/pharmacology , Phosphorylcholine/analogs & derivatives , Animals , Antineoplastic Combined Chemotherapy Protocols , Caspases/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cluster Analysis , Drug Synergism , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Hodgkin Disease/drug therapy , Hodgkin Disease/genetics , Hodgkin Disease/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Mitochondria/metabolism , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , Necrosis , Niacinamide/administration & dosage , Niacinamide/pharmacology , Phenylurea Compounds/administration & dosage , Phosphorylcholine/administration & dosage , Phosphorylcholine/pharmacology , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Sorafenib , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...