Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 20(3): 1540-1559, 2018 Jan 17.
Article in English | MEDLINE | ID: mdl-29260176

ABSTRACT

The present paper reports on the γ-ray and C6+ ion beam induced effect on the structural and luminescence properties of Eu doped LiNaSO4 phosphors synthesized via wet the chemical method. The material was irradiated by 60Co and 137Cs γ-rays and 75 MeV C6+ ions in a fluence range varying from 2 × 1010 to 1 × 1012 ion per cm2. The ion induced modified properties were investigated using X-ray diffraction (XRD), micro-Raman spectroscopy, photoluminescence (PL), thermoluminescence (TL) and electron paramagnetic resonance (EPR) studies. The XRD and micro-Raman results confirm the loss of crystallinity and elongation of the lattice parameters after ion beam irradiation. The presence of both divalent as well as trivalent states of Eu ions at multiple sites of LiNaSO4 is observed by PL study. Irradiation of the LiNaSO4:Eu phosphor with a C6+ ion beam modifies the population of the valence state of the doped rare earth Eu ion and enhances the TL sensitivity of this phosphor. The nature of the prominent TL glow curve is identical for both γ-ray and C6+ ion beam irradiated materials while additional deep trap levels appear in the latter due to the formation of several types of cation and anion vacancy. The electron paramagnetic resonance (EPR) technique also supports the presence of the Eu ion at multiple sites and provides information regarding several types of radical produced after γ-ray and C6+ ion irradiation. Finally, a mechanism is presented for the thermally stimulated luminescence phenomenon on the basis of our observed results from the PL, TL and EPR studies. The reason behind ion beam irradiation induced modification of the TL properties and enhancement of luminescence intensity is also explained in this report.

2.
Luminescence ; 31(5): 1115-24, 2016 Aug.
Article in English | MEDLINE | ID: mdl-26768666

ABSTRACT

We compare the thermoluminescence (TL) behavior of Ce(3+) ion-activated LiCaAlF6 exposed to γ-rays and a carbon ion beam. The reported phosphor is synthesized using an in-house precipitation method with varying concentrations of activator ion and is characterized by X-ray diffraction (XRD) and TL. Rietveld refinement is performed to study the structural statistics. The TL glow curve consists of a prominent glow peak at 232°C with three shoulders at 115, 159 and 333°C when exposed to γ-rays from a (60) Co source. When exposed to a C(5+) ion beam, the TL glow curve consists of five peaks with peak temperatures near 156, 221, 250, 287 and 330°C, and is found to vary slightly with changing fluence. Glow curve convolution deconvolution (GCCD) functions are applied to the TL curves for complete analysis of the glow curve structure and TL traps. The order of kinetics (b), activation energy (E) and frequency factor are determined using Chen's peak shape method and theoretical curves are drawn using GCCD functions. A track interaction model (TIM) is used to explain the sublinearity/saturation at higher fluences. Ion beam parameters are analyzed using Monte-Carlo simulation-based SRIM-2013 code. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Carbon/chemistry , Cerium/chemistry , Gamma Rays , Lithium Compounds/chemistry , Luminescence , Temperature , X-Ray Diffraction
3.
Luminescence ; 30(7): 967-77, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25640581

ABSTRACT

The photoluminescence and thermoluminescence characteristics of rare earths (Dy or Ce) activated LiCaBO3 phosphors have been studied. Phosphors were synthesized by modified solid state synthesis. The phosphors were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL) and thermoluminescence (TL) for structural, morphological and luminescence studies. Dy(3+) activated LiCaBO3 shows emission at 486 and 577 nm due to (4) F9/2 →(6) H15/2 and (4) F9/2 → (6) H13/2 transition, respectively, whereas the PL emission spectra of Ce(3+) activated LiCaBO3 phosphor shows a broad band peaking at 432 nm, which is due to the transition from 5d level to the ground state of the Ce(3+) ion. The thermoluminescence study was also carried out for both these phosphors for γ-ray irradiation and carbon beam irradiation. Linearity was studied for a 0.4-3.1 Rad dose γ-rays. Linear behaviour over this dose range was observed. Gamma ray-irradiated phosphors were shown to be negligible fading upon storage. All the samples were also studied for 75 MeV C(5+) ion beam exposure in the range of 3.75 × 10(12) - 7.5 × 10(13) ion cm(-2) fluence. In addition to this, trapping parameters of all the samples were also calculated using Chen's peak shape method.


Subject(s)
Borates/chemistry , Calcium Compounds/chemistry , Cerium/chemistry , Dysprosium/chemistry , Gamma Rays , Lithium Compounds/chemistry , Luminescence , Ions/chemistry , Luminescent Measurements
4.
Luminescence ; 29(5): 480-91, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24753140

ABSTRACT

We report a comparative study on structural and thermoluminescence modifications of Y2O3:Eu(3+) phosphor induced by 150 MeV Ni(7+), 120 MeV Ag(9+) and 110 MeV Au(8+) swift heavy ions (SHI) in the fluence range 1 × 10(11) to 1 × 10(13) ions/cm(2). X-Ray diffraction and transition electron microscopy studies confirm the loss of crystallinity of the phosphors after ion irradiation, which is greater in the case of Au ion irradiation. Structural refinement using the Rietveld method yields the various structural parameters of ion-irradiated phosphors. Thermoluminescence glow curves of ion-irradiated phosphors show a small shift in the position of the peaks, along with an increase in intensity with ion fluence. Stopping range of ions in Matter (SRIM) calculations were performed to correlate the change in thermoluminescence properties of various ion-irradiated phosphors. It shows that the defects created by 110 MeV Au(8+) ions are greater in number. Trapping parameters of ion-irradiated phosphors were calculated from thermoluminescence data using various glow curve analysis methods.


Subject(s)
Europium/chemistry , Gold/chemistry , Nickel/chemistry , Silver/chemistry , Yttrium/chemistry , Heavy Ions , Luminescence , Luminescent Measurements , X-Ray Diffraction
5.
Cell Death Dis ; 4: e590, 2013 Apr 18.
Article in English | MEDLINE | ID: mdl-23598402

ABSTRACT

CCAAT/enhancer-binding protein alpha (C/EBPα) is an important transcription factor involved in granulocytic differentiation. Here, for the first time we demonstrate that E6-associated protein (E6AP), an E3 ubiquitin ligase targets C/EBPα for ubiquitin-mediated proteasome degradation and thereby negatively modulates its functions. Wild-type E6AP promotes ubiquitin dependent proteasome degradation of C/EBPα, while catalytically inactive E6-associated protein having cysteine replaced with alanine at amino-acid position 843 (E6AP-C843A) rather stabilizes it. Further, these two proteins physically associate both in non-myeloid (overexpressed human embryonic kidney epithelium) and myeloid cells. We show that E6AP-mediated degradation of C/EBPα protein expression curtails its transactivation potential on its target genes. Noticeably, E6AP degrades both wild-type 42 kDa CCAAT-enhancer-binding protein alpha (p42C/EBPα) and mutant isoform 30 kDa CCAAT-enhancer-binding protein alpha (p30C/EBPα), this may explain perturbed p42C/EBPα/p30C/EBPα ratio often observed in acute myeloid leukemia (AML). We show that overexpression of catalytically inactive E6AP-C843A in C/EBPα inducible K562- p42C/EBPα-estrogen receptor (ER) cells inhibits ß-estradiol (E2)-induced C/EBPα degradation leading to enhanced granulocytic differentiation. This enhanced granulocytic differentiation upon E2-induced activation of C/EBPα in C/EBPα stably transfected cells (ß-estradiol inducible K562 cells stably expressing p42C/EBPα-ER (K562-C/EBPα-p42-ER)) was further substantiated by siE6AP-mediated knockdown of E6AP in both K562-C/EBPα-p42-ER and 32dcl3 (32D clone 3, a cell line widely used model for in vitro study of hematopoietic cell proliferation, differentiation, and apoptosis) cells. Taken together, our data suggest that E6AP targeted C/EBPα protein degradation may provide a possible explanation for both loss of expression and/or functional inactivation of C/EBPα often experienced in myeloid leukemia.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/metabolism , Granulocytes/cytology , Proteasome Endopeptidase Complex/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Cell Differentiation/drug effects , Estradiol/pharmacology , Granulocytes/metabolism , HEK293 Cells , Humans , K562 Cells , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Proteasome Endopeptidase Complex/genetics , Protein Binding , Protein Isoforms/metabolism , RNA Interference , RNA, Small Interfering/metabolism , Transcriptional Activation , U937 Cells , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics
6.
Cathet Cardiovasc Diagn ; 43(1): 87-9, 1998 Jan.
Article in English | MEDLINE | ID: mdl-9473201

ABSTRACT

Knotting of a balloon-tipped, flow-directed catheter leading to difficulty in its removal is a rare but serious complication. Several methods have been used to remove such catheters with nonsurgical techniques. A case of knotted catheter that was also entrapped in a surgical suture in a patient undergoing emergency mitral valve replacement is presented and a method for its nonsurgical removal is described.


Subject(s)
Catheterization, Swan-Ganz/adverse effects , Adult , Catheterization, Swan-Ganz/instrumentation , Equipment Failure , Humans , Male , Radiography, Thoracic
SELECTION OF CITATIONS
SEARCH DETAIL