Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 19(39): 26621-26629, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28953273

ABSTRACT

The ground state tautomerism and excited state intramolecular proton transfer (ESIPT) of 10-hydroxybenzo[h]quinoline (HBQ) and its nitro derivatives, 7-nitrobenzo[h]quinolin-10-ol (2) and 7,9-dinitrobenzo[h]quinolin-10-ol (3), have been studied in acetonitrile using steady state as well as time dependent spectroscopy and quantum-chemical calculations. In addition to the enol form absorbance in the range 360-390 nm, the absorption spectra of 2 and 3 exhibit a red shifted band at ∼450 nm. Chemometric data processing, based on individual band decomposition, allowed us to estimate the position of the ground state enol-keto tautomeric equilibrium (ΔG values of 1.03 and 0.62 kcal mol-1 respectively for 2 and 3). The fluorescence stems from the keto form even if the enol form is optically excited as proven by the shape of the excitation spectra indicating that ESIPT takes place. The Stokes shift of the substituted compounds is substantially lower compared to HBQ, which follows from the fact that the substitution occurs in the formal cyclohexa-2,4-dienone moiety and leads to a decrease of the HOMO level of the keto tautomer. The pump-probe experiments show that in the nitro substituted HBQs 2 and 3 ESIPT occurs with a time constant of 0.89 ps and 0.68 ps, respectively. In both cases a mixture of the enol and proton transfer forms is optically excited. The enol form exhibits then the ESIPT and subsequently both fractions take the same relaxation path. We propose that in 2 and 3 the ESIPT path exhibits a potential energy barrier resulting in an incoherent rate governed process while in HBQ the ESIPT proceeds as a ballistic wavepacket motion along a path without significant barriers. The theoretical calculations (M06-2X/TZVP) confirm the existence of a barrier in the ground and excited states as result of the substitution.

2.
Phys Chem Chem Phys ; 19(10): 7316-7325, 2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28239718

ABSTRACT

The solvent dependent excited state dynamics of 4-hydroxy-3-(piperidin-1-ylmethyl)-1-naphthaldehyde (compound 2), a candidate for a molecular switch based on intramolecular proton transfer, was investigated by ultrafast spectroscopy and quantum-chemical calculations. In acetonitrile a mixture of molecules in the enol and zwitterionic proton transfer (PT) form exists in the ground state. However, the zwitterion is the energetically favored one in the electronically excited state. Optical excitation of the enol form results in intramolecular proton transfer and formation of the PT form within 1.4 ps. In addition we observe the appearance of a long living species with a rate of 1/(330 ps) which returns to the original ground state on time scales beyond 2 ns and which is attributed to the triplet state. In toluene the enol form is the only observed ground state tautomer, but no light induced proton transfer occurs. Again the long living triplet state is formed, even with a faster rate of 1/(11 ps). In methanol hydrogen bonds between 2 and solvent molecules stabilize strongly the PT form in the ground as well as in the excited state. Also in this case no light induced intramolecular proton transfer was observed but the formation of a long living species was. However, its absorption spectrum is distinctly different from the triplet state seen in acetonitrile and methanol.

3.
Phys Chem Chem Phys ; 18(36): 25110-25119, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27722699

ABSTRACT

The quantum efficiency of light emission is a crucial parameter of supramolecular aggregates that can be tuned by the molecular design of the monomeric species. Here, we report on a strong variation of the fluorescence quantum yield due to different phases of aggregation for the case of a perylene bisimide dye. In particular, a change of the dominant aggregation character from H- to J-type within the first aggregation steps is found, explaining the observed dramatic change in quantum yield. This behaviour is rationalised by means of a systematic study of the intermolecular potential energy surfaces using the time-dependent density functional based tight-binding (TD-DFTB) method. This provides a correlation between structural changes and a coupling strength and supports the notion of H-type stacked dimers and J-type stack-slipped dimers. The exciton-vibrational level structure is modelled by means of an excitonic dimer model including two effective vibrational modes per monomer. Calculated absorption and fluorescence spectra are found to be in reasonable agreement with experimental ones, thus supporting the conclusion on the aggregation behaviour.

4.
Phys Chem Chem Phys ; 17(15): 10238-49, 2015 Apr 21.
Article in English | MEDLINE | ID: mdl-25797952

ABSTRACT

A series of naphthaldehydes, including a Mannich base, have been investigated by UV-Vis spectroscopy, NMR and theoretical methods to explore their potential tautomerism. In the case of 4-hydroxy-1-naphthaldehyde concentration dependent deprotonation has been detected in methanol and acetonitrile. For 4-hydroxy-3-(piperidin-1-ylmethyl)-1-naphthaldehyde (a Mannich base) an intramolecular proton transfer involving the OH group and the piperidine nitrogen occurs. In acetonitrile the equilibrium is predominantly at the OH-form, whereas in methanol the proton transferred tautomer is the preferred form. In chloroform and toluene, the OH form is completely dominant. Both 4-hydroxy-1-naphthaldehyde and 4-methoxy-1-naphthaldehyde (fixed enol form) show dimerization in the investigated solvents and the crystallographic data, obtained for the latter, confirm the existence of a cyclic dimer.

7.
Rev Sci Instrum ; 79(1): 013107, 2008 Jan.
Article in English | MEDLINE | ID: mdl-18248022

ABSTRACT

We describe an ultrasensitive pump-probe spectrometer for transient absorption measurements in the gas phase and in solution. The tunable UV pump and the visible (450-740 nm) probe pulses are generated by two independently tunable noncollinear optical parametric amplifiers, providing a temporal resolution of 20 fs. A homebuilt low gain photodetector is used to accommodate strong probe pulses with a shot noise significantly lower than the overall measurement noise. A matched digitizing scheme for single shot analysis of the light pulses at kilohertz repetition rates that minimizes the electronic noise contributions to the transient absorption signal is developed. The data processing scheme is optimized to yield best suppression of the laser excess noise and thereby transient absorbance changes down to 1.1 x 10(-6) can be resolved. A collinear focusing geometry optimized for a 50 mm interaction length combined with a heatable gas cell allows us to perform measurements on substances with low vapor pressures, e.g., on medium sized molecules which are crystalline at room temperature. As an application example highlighting the capability of this instrument, we present the direct time-domain observation of the ultrafast excited state intramolecular proton transfer of 2-(2(')-hydroxyphenyl)benzothiazole in the gas phase. We are able to compare the resulting dynamics in the gas phase and in solution with a temporal precision of better than 5 fs.


Subject(s)
Gases/analysis , Gases/chemistry , Spectrophotometry, Ultraviolet/instrumentation , Spectrophotometry, Ultraviolet/methods , Equipment Design , Equipment Failure Analysis , Phase Transition , Pressure , Reproducibility of Results , Sensitivity and Specificity
8.
Phys Rev Lett ; 99(17): 176402, 2007 Oct 26.
Article in English | MEDLINE | ID: mdl-17995352

ABSTRACT

The exciton dynamics in microcrystalline pentacene films is investigated by transient absorption measurements with 30 fs time resolution. It is found that the emission from photoexcited Frenkel excitons decays within 70 fs due to the ultrafast formation of an excitonic species with a strongly reduced transition dipole to the ground state and an absorption dipole in the plane of the film. We propose that an excimer exciton is formed and stabilized by changes of the local crystal structure. The subsequent dynamics is dominated by diffusion controlled annihilation and trapping.

9.
Opt Lett ; 31(4): 543-5, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16496914

ABSTRACT

We report the generation of shaped tunable ultrashort ultraviolet pulses with full control over the spectral phase and amplitude. The output of a noncollinearly phase-matched optical parametric amplifier is shaped in phase and amplitude by a liquid-crystal spatial light modulator. The resulting structured visible pulses are transferred into the ultraviolet by sum-frequency mixing with strongly chirped 775 nm pulses. Single, double, and triple pulses at 344 nm with subpulses as short as 19 fs are explicitly demonstrated. The method can easily be adapted to arbitrarily shaped pulses throughout the 295-370 nm range.

10.
J Chem Phys ; 122(24): 244315, 2005 Jun 22.
Article in English | MEDLINE | ID: mdl-16035765

ABSTRACT

The intramolecular degrees of freedom contributing to the ultrafast excited-state intramolecular proton transfer of 1-hydroxy-2-acetonaphthone are determined. Thereto, resonance Raman studies are combined with transient absorption measurements with 30-fs time resolution. Enhanced Raman intensity is found in coordinates that are dominantly associated with deformations and bond length changes in the naphthalene chromophore. This indicates that the primary changes after the optical excitation are a geometric relaxation of the chromophore. A ringing of the molecule after the ultrafast proton transfer is observed by the transient absorption measurements. It reveals the nuclear coordinates contributing to the reaction path beyond the Franck-Condon region. There, planar H-chelate ring deformations changing the donor-acceptor distance are found to dominate. The difference in the observed vibrational signatures indicates a significant turn in the reaction path.

11.
J Chem Phys ; 120(24): 11634-9, 2004 Jun 22.
Article in English | MEDLINE | ID: mdl-15268197

ABSTRACT

The photo-Fries rearrangement of 4-tert-butylphenyl acetate dissolved in cyclohexane is investigated by two-color femtosecond pump probe spectroscopy. The spectral transmission changes are characterized in the visible and ultraviolet spectral region and allow for the first time to temporally resolve the primary reaction steps. We find that the photoinduced homolytic cleavage of the CO bond occurs within 2 ps and that the geminate recombination of the generated radical pair to the intermediate substituted cyclohexadienone takes 13 ps. The experimental results support a model in which the initial reaction proceeds from the originally excited pipi(*) state via a barrier to a dissociative pisigma(*) state.

12.
Opt Lett ; 28(3): 185-7, 2003 Feb 01.
Article in English | MEDLINE | ID: mdl-12656326

ABSTRACT

Stable interference between the outputs of two noncollinearly phase-matched optical parametric amplifiers seeded by separate white-light continua has been observed. This means that the tunable visible pulses have a well-defined relative phase and that the temporal jitter between them is less than 1 fs. The residual phase variations are due to fluctuations of the pump power.

13.
Faraday Discuss ; (115): 33-48; discussion 79-102, 2000.
Article in English | MEDLINE | ID: mdl-11040499

ABSTRACT

Femtosecond time-resolved photoelectron spectroscopy is emerging as a new technique for investigating polyatomic excited state dynamics. Due to the sensitivity of photoelectron spectroscopy to both electronic configurations and vibrational dynamics, it is well suited to the study of non-adiabatic processes such as internal conversion, which often occur on sub-picosecond time scales. We discuss the technical requirements for such experiments, including lasers systems, energy- and angle-resolved photoelectron spectrometers and new detectors for coincidence experiments. We present a few examples of these methods applied to problems in diatomic wavepacket dynamics and ultrafast non-adiabatic processes in polyatomic molecules.

SELECTION OF CITATIONS
SEARCH DETAIL
...