Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 87(16): 8399-8406, 2015 Aug 18.
Article in English | MEDLINE | ID: mdl-26189812

ABSTRACT

Actin is the major component of the cytoskeleton, playing an essential role in the structure and motility of both muscle and nonmuscle cells. It is highly conserved and encoded by a multigene family. α-Cardiac actin (αCAA) and α-skeletal actin (αSKA), encoded by two different genes, are the primary actin isoforms expressed in striated muscles. The relative expression levels of αSKA and αCAA have been shown to vary between species and under pathological conditions. In particular, an increased αSKA expression is believed to be a programmed response of a diseased heart. Therefore, it is essential to quantify the relative expression of αSKA and αCAA, which remains challenging due to the high degree of sequence similarity between these isoforms (98.9%). Herein, we developed a top-down liquid chromatography/mass spectrometry-based ("LC/MS+") method for the rapid purification and comprehensive analysis of α-actin extracted from muscle tissues. We thoroughly investigated all of the actin isoforms in healthy human cardiac and skeletal muscles. We found that αSKA is the only isoform expressed in skeletal muscle, whereas αCAA and αSKA are coexpressed in cardiac muscle. We then applied our method to quantify the α-actin isoforms in human healthy hearts and failing hearts with dilated cardiomyopathy (DCM). We found that αSKA is augmented in DCM compared with healthy controls, 43.1 ± 0.9% versus 23.7 ± 1.7%, respectively. As demonstrated, top-down LC/MS+ provides an effective and comprehensive method for the purification, quantification, and characterization of α-actin isoforms, enabling assessment of their clinical potential as cardiac disease markers.


Subject(s)
Actins/blood , Biomarkers/blood , Chromatography, Liquid , Heart Diseases/blood , Mass Spectrometry , Protein Isoforms/blood , Actins/chemistry , Humans , Myocardium/chemistry , Myocardium/pathology , Reference Standards , Time Factors
2.
J Thorac Cardiovasc Surg ; 148(3): 1123-30; discussion 1130, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25129607

ABSTRACT

OBJECTIVE: To investigate the resuscitation potential and contractile function in adult human donation after cardiac death (DCD) hearts by ex vivo perfusion. METHODS: With institutional review board approval and under the DCD protocol at the University of Wisconsin (UW) Organ Procurement Organization, 5 brain dead (BD) and 5 DCD donor hearts were evaluated. All BD hearts were declined for clinical transplantation because of coronary artery disease, advanced age, or social history. All hearts were preserved by flushing and cold storage with UW solution. By using our ex vivo perfusion system, the left ventricular end systolic pressure-volume relationship (LV-ESPVR) was assessed for 2 hours of oxygenated blood reperfusion. RESULTS: All BD (n = 5) and 4 DCD hearts were successfully resuscitated. One DCD heart was unable to be resuscitated due to prolonged warm ischemic time (WIT; 174 minutes). Mean WIT for resuscitated DCD hearts (from extubation to flushing with cold UW solution) was 34 ± 3 minutes (range, 26 to 40 minutes); mean cold ischemic time for BD donors was 211 ± 31 minutes compared with 177 ± 64 minutes for DCD donors. The calculated LV-ESPVRs for BD hearts after 1 and 2 hours of reperfusion were 6.9 ± 0.7 and 5.7 ± 1.0 mm Hg/mL, respectively; LV-ESPVRs for DCD hearts after 1 and 2 hours of reperfusion were 5.6 ± 1.5 (P = .45) and 3.0 ± 0.7 mm Hg/mL (P = .07), respectively. CONCLUSIONS: We successfully resuscitated and measured ex vivo cardiac function in human DCD and BD donor hearts. Resuscitation potential in DCD hearts was achieved when the WIT was less than 40 minutes. Contractile performance in DCD hearts tended to be lower compared with BD hearts. Further investigation with longer reperfusion periods seems warranted.


Subject(s)
Brain Death , Heart Diseases/mortality , Heart Transplantation , Organ Preservation Solutions/pharmacology , Perfusion/methods , Tissue Donors/supply & distribution , Tissue and Organ Harvesting/methods , Adenosine/adverse effects , Adenosine/pharmacology , Adult , Allopurinol/adverse effects , Allopurinol/pharmacology , Cold Ischemia , Female , Glutathione/adverse effects , Glutathione/pharmacology , Humans , Insulin/adverse effects , Insulin/pharmacology , Male , Middle Aged , Myocardial Contraction , Organ Preservation Solutions/adverse effects , Perfusion/adverse effects , Raffinose/adverse effects , Raffinose/pharmacology , Time Factors , Tissue and Organ Harvesting/adverse effects , Ventricular Function, Left , Ventricular Pressure , Warm Ischemia , Wisconsin
3.
Am J Physiol Heart Circ Physiol ; 300(3): H869-78, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21217059

ABSTRACT

Myosin heavy chain (MHC) isoforms are principal determinants of work capacity in mammalian ventricular myocardium. The ventricles of large mammals including humans normally express ∼10% α-MHC on a predominantly ß-MHC background, while in failing human ventricles α-MHC is virtually eliminated, suggesting that low-level α-MHC expression in normal myocardium can accelerate the kinetics of contraction and augment systolic function. To test this hypothesis in a model similar to human myocardium we determined composite rate constants of cross-bridge attachment (f(app)) and detachment (g(app)) in porcine myocardium expressing either 100% α-MHC or 100% ß-MHC in order to predict the MHC isoform-specific effect on twitch kinetics. Right atrial (∼100% α-MHC) and left ventricular (∼100% ß-MHC) tissue was used to measure myosin ATPase activity, isometric force, and the rate constant of force redevelopment (k(tr)) in solutions of varying Ca(2+) concentration. The rate of ATP utilization and k(tr) were approximately ninefold higher in atrial compared with ventricular myocardium, while tension cost was approximately eightfold greater in atrial myocardium. From these values, we calculated f(app) to be ∼10-fold higher in α- compared with ß-MHC, while g(app) was 8-fold higher in α-MHC. Mathematical modeling of an isometric twitch using these rate constants predicts that the expression of 10% α-MHC increases the maximal rate of rise of force (dF/dt(max)) by 92% compared with 0% α-MHC. These results suggest that low-level expression of α-MHC significantly accelerates myocardial twitch kinetics, thereby enhancing systolic function in large mammalian myocardium.


Subject(s)
Heart/physiology , Myocardial Contraction/physiology , Myocardium/metabolism , Myosin Heavy Chains/metabolism , Ventricular Myosins/metabolism , Animals , Calcium/metabolism , Calcium/physiology , Female , Male , Muscle Strength/physiology , Myosins/metabolism , Swine/physiology
4.
J Physiol ; 588(Pt 6): 981-93, 2010 Mar 15.
Article in English | MEDLINE | ID: mdl-20123786

ABSTRACT

Phosphorylation of myosin regulatory light chain (RLC) by myosin light chain kinase (MLCK) and myosin binding protein-C (cMyBP-C) by protein kinase A (PKA) independently accelerate the kinetics of force development in ventricular myocardium. However, while MLCK treatment has been shown to increase the Ca(2+) sensitivity of force (pCa(50)), PKA treatment has been shown to decrease pCa(50), presumably due to cardiac troponin I phosphorylation. Further, MLCK treatment increases Ca(2+)-independent force and maximum Ca(2+)-activated force, whereas PKA treatment has no effect on either force. To investigate the structural basis underlying the kinase-specific differential effects on steady-state force, we used synchrotron low-angle X-ray diffraction to compare equatorial intensity ratios (I(1,1)/I(1,0)) to assess the proximity of myosin cross-bridge mass relative to actin and to compare lattice spacings (d(1,0)) to assess the inter-thick filament spacing in skinned myocardium following treatment with either MLCK or PKA. As we showed previously, PKA phosphorylation of cMyBP-C increases I(1,1)/I(1,0) and, as hypothesized, treatment with MLCK also increased I(1,1)/I(1,0), which can explain the accelerated rates of force development during activation. Importantly, interfilament spacing was reduced by 2 nm (3.5%) with MLCK treatment, but did not change with PKA treatment. Thus, RLC or cMyBP-C phosphorylation increases the proximity of cross-bridges to actin, but only RLC phosphorylation affects lattice spacing, which suggests that RLC and cMyBP-C modulate the kinetics of force development by similar structural mechanisms; however, the effect of RLC phosphorylation to increase the Ca(2+) sensitivity of force is mediated by a distinct mechanism, most probably involving changes in interfilament spacing.


Subject(s)
Carrier Proteins/physiology , Myocardial Contraction/physiology , Myosin Light Chains/physiology , Ventricular Function, Right/physiology , Animals , Calcium/physiology , Cyclic AMP-Dependent Protein Kinases/pharmacology , Female , Male , Mice , Mice, Inbred Strains , Models, Animal , Myocardial Contraction/drug effects , Myosin-Light-Chain Kinase/pharmacology , Phosphorylation/drug effects , Phosphorylation/physiology , Ventricular Function, Right/drug effects
5.
Am J Physiol Heart Circ Physiol ; 297(1): H247-56, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19395549

ABSTRACT

The ventricles of small mammals express mostly alpha-myosin heavy chain (alpha-MHC), a fast isoform, whereas the ventricles of large mammals, including humans, express approximately 10% alpha-MHC on a predominately beta-MHC (slow isoform) background. In failing human ventricles, the amount of alpha-MHC is dramatically reduced, leading to the hypothesis that even small amounts of alpha-MHC on a predominately beta-MHC background confer significantly higher rates of force development in healthy ventricles. To test this hypothesis, it is necessary to determine the fundamental rate constants of cross-bridge attachment (f(app)) and detachment (g(app)) for myosins composed of 100% alpha-MHC or beta-MHC, which can then be used to calculate twitch time courses for muscles expressing variable ratios of MHC isoforms. In the present study, rat skinned trabeculae expressing either 100% alpha-MHC or 100% beta-MHC were used to measure ATPase activity, isometric force, and the rate constant of force redevelopment (k(tr)) in solutions of varying Ca(2+) concentrations. The rate of ATP utilization was approximately 2.5-fold higher in preparations expressing 100% alpha-MHC compared with those expressing only beta-MHC, whereas k(tr) was 2-fold faster in the alpha-MHC myocardium. From these variables, we calculated f(app) to be approximately threefold higher for alpha-MHC than beta-MHC and g(app) to be twofold higher in alpha-MHC. Mathematical modeling of isometric twitches predicted that small increases in alpha-MHC significantly increased the rate of force development. These results suggest that low-level expression of alpha-MHC has significant effects on contraction kinetics.


Subject(s)
Myocardial Contraction/physiology , Myocardium/metabolism , Myosin Heavy Chains/metabolism , Myosin Heavy Chains/physiology , Myosins/metabolism , Myosins/physiology , Adenosine Diphosphate/metabolism , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/metabolism , Animals , Calcium Signaling/physiology , Female , Isomerism , Isometric Contraction/physiology , Kinetics , Models, Statistical , Myocytes, Cardiac/physiology , Myofibrils/metabolism , Pyruvates/metabolism , Rats , Rats, Sprague-Dawley , Thyroidectomy
6.
Circ Res ; 103(3): 244-51, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18599866

ABSTRACT

Protein kinase A-mediated (PKA) phosphorylation of cardiac myosin binding protein C (cMyBP-C) accelerates the kinetics of cross-bridge cycling and may relieve the tether-like constraint of myosin heads imposed by cMyBP-C. We favor a mechanism in which cMyBP-C modulates cross-bridge cycling kinetics by regulating the proximity and interaction of myosin and actin. To test this idea, we used synchrotron low-angle x-ray diffraction to measure interthick filament lattice spacing and the equatorial intensity ratio, I(11)/I(10), in skinned trabeculae isolated from wild-type and cMyBP-C null (cMyBP-C(-/-)) mice. In wild-type myocardium, PKA treatment appeared to result in radial or azimuthal displacement of cross-bridges away from the thick filaments as indicated by an increase (approximately 50%) in I(11)/I(10) (0.22+/-0.03 versus 0.33+/-0.03). Conversely, PKA treatment did not affect cross-bridge disposition in mice lacking cMyBP-C, because there was no difference in I(11)/I(10) between untreated and PKA-treated cMyBP-C(-/-) myocardium (0.40+/-0.06 versus 0.42+/-0.05). Although lattice spacing did not change after treatment in wild-type (45.68+/-0.84 nm versus 45.64+/-0.64 nm), treatment of cMyBP-C(-/-) myocardium increased lattice spacing (46.80+/-0.92 nm versus 49.61+/-0.59 nm). This result is consistent with the idea that the myofilament lattice expands after PKA phosphorylation of cardiac troponin I, and when present, cMyBP-C, may stabilize the lattice. These data support our hypothesis that tethering of cross-bridges by cMyBP-C is relieved by phosphorylation of PKA sites in cMyBP-C, thereby increasing the proximity of cross-bridges to actin and increasing the probability of interaction with actin on contraction.


Subject(s)
Actins/metabolism , Carrier Proteins/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Myocardium/metabolism , Myosins/metabolism , Animals , Carrier Proteins/physiology , Heart/physiology , Kinetics , Mice , Mice, Knockout , Microfilament Proteins/metabolism , Myocardial Contraction , Phosphorylation , Scattering, Small Angle , X-Ray Diffraction
7.
J Physiol ; 579(Pt 1): 161-73, 2007 Feb 15.
Article in English | MEDLINE | ID: mdl-17138609

ABSTRACT

The speed and force of myocardial contraction during systolic ejection is largely dependent on the intrinsic contractile properties of cardiac myocytes. As the myosin heavy chain (MHC) isoform of cardiac muscle is an important determinant of the contractile properties of individual myocytes, we studied the effects of altered MHC isoform expression in rat myocardium on the mechanical properties of skinned ventricular preparations. Skinned myocardium from thyroidectomized rats expressing only the beta MHC isoform displayed rates of force redevelopment that were about 2.5-fold slower than in myocardium from hyperthyroid rats expressing only the alpha MHC isoform, but the amount of force generated at a given level of Ca2+ activation was not different. Because recent studies suggest that the stretch activation response in myocardium has an important role in systolic function, we also examined the effect of MHC isoform expression on the stretch activation response by applying a rapid stretch (1% of muscle length) to an otherwise isometrically contracting muscle fibre. Sudden stretch of myocardium resulted in a concomitant increase in force that quickly decayed to a minimum and was followed by a delayed redevelopment of force (i.e. stretch activation) to levels greater than prestretch force. beta MHC expression dramatically slowed the overall rate of the stretch activation response compared to expression of alpha MHC isoform; specifically, the rate of force decay was approximately 2-fold slower and the rate of delayed force development was approximately 2.5-fold slower. In contrast, MHC isoform had no effect on the amplitude of the stretch activation response. Collectively, these data show that expression of beta MHC in myocardium dramatically slows rates of cross-bridge recruitment and detachment which would be expected to decrease power output and contribute to depressed systolic function in end-stage heart failure.


Subject(s)
Myocardial Contraction/physiology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myosin Heavy Chains/metabolism , Animals , Female , Heart Failure/physiopathology , Heart Ventricles/cytology , Heart Ventricles/metabolism , Hyperthyroidism/physiopathology , Hypothyroidism/physiopathology , In Vitro Techniques , Isomerism , Myosin Heavy Chains/chemistry , Rats , Rats, Sprague-Dawley , Systole/physiology , Thyroidectomy
SELECTION OF CITATIONS
SEARCH DETAIL
...