Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 69(44): 13200-13216, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34709825

ABSTRACT

Nontarget data acquisition for target analysis (nDATA) workflows using liquid chromatography-high-resolution accurate mass (LC-HRAM) spectrometry, spectral screening software, and a compound database have generated interest because of their potential for screening of pesticides in foods. However, these procedures and particularly the instrument processing software need to be thoroughly evaluated before implementation in routine analysis. In this work, 25 laboratories participated in a collaborative study to evaluate an nDATA workflow on high moisture produce (apple, banana, broccoli, carrot, grape, lettuce, orange, potato, strawberry, and tomato). Samples were extracted in each laboratory by quick, easy, cheap, effective, rugged, and safe (QuEChERS), and data were acquired by ultrahigh-performance liquid chromatography (UHPLC) coupled to a high-resolution quadrupole Orbitrap (QOrbitrap) or quadrupole time-of-flight (QTOF) mass spectrometer operating in full-scan mass spectrometry (MS) data-independent tandem mass spectrometry (LC-FS MS/DIA MS/MS) acquisition mode. The nDATA workflow was evaluated using a restricted compound database with 51 pesticides and vendor processing software. Pesticide identifications were determined by retention time (tR, ±0.5 min relative to the reference retention times used in the compound database) and mass errors (δM) of the precursor (RTP, δM ≤ ±5 ppm) and product ions (RTPI, δM ≤ ±10 ppm). The elution profiles of all 51 pesticides were within ±0.5 min among 24 of the participating laboratories. Successful screening was determined by false positive and false negative rates of <5% in unfortified (pesticide-free) and fortified (10 and 100 µg/kg) produce matrices. Pesticide responses were dependent on the pesticide, matrix, and instrument. The false negative rates were 0.7 and 0.1% at 10 and 100 µg/kg, respectively, and the false positive rate was 1.1% from results of the participating LC-HRAM platforms. Further evaluation was achieved by providing produce samples spiked with pesticides at concentrations blinded to the laboratories. Twenty-two of the 25 laboratories were successful in identifying all fortified pesticides (0-7 pesticides ranging from 5 to 50 µg/kg) for each produce sample (99.7% detection rate). These studies provide convincing evidence that the nDATA comprehensive approach broadens the screening capabilities of pesticide analyses and provide a platform with the potential to be easily extended to a larger number of other chemical residues and contaminants in foods.


Subject(s)
Pesticide Residues , Pesticides , Chromatography, High Pressure Liquid , Chromatography, Liquid , Food Contamination/analysis , Fruit/chemistry , Pesticide Residues/analysis , Pesticides/analysis , Tandem Mass Spectrometry , Vegetables , Workflow
2.
Food Sci Nutr ; 9(5): 2658-2667, 2021 May.
Article in English | MEDLINE | ID: mdl-34026079

ABSTRACT

Samples of 23 seafood products were obtained internationally in processing plants and subjected to controlled decomposition to produce seven discrete quality increments. A sensory expert evaluated each sample for decomposition, using a scale of 1-100. Samples were then extracted and analyzed by liquid chromatography with high-resolution mass spectrometry (LC-HRMS). Untargeted data processing was performed, and a sensory-driven Random Forest model in the R programming language for each product was created. Five samples of each quality increment were analyzed in duplicate on separate days. Scores analogous to those obtained through sensory analysis were calculated by this approach, and these were compared to the original sensory findings. Correlation values (r) were calculated from these plots and ranged from 0.971 to 0.999. The finding of decomposition state of each sample was consistent with sensory for 548 of 550 test samples (99.6%). Of the two misidentified samples, one was a false negative, and one false positive (0.2% each). One additional sample from each of the 1st, 4th, and 7th increments of each product was extracted and analyzed on a third separate day to evaluate reproducibility. The range of these triplicate calculated scores was 15 or less for all samples tested, 10 or less for 63 of the 69 triplicate tests (91%), and five or less for 41 (59%). From the models, the most predictive compounds of interest were selected, and many of these were identified using MS2 data with standard or database comparison, allowing identification of compounds indicative of decomposition in these products which have not previously been explored for this purpose.

3.
Sci Rep ; 11(1): 5676, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707610

ABSTRACT

The sequencing, assembly, and analysis of bacterial genomes is central to tracking and characterizing foodborne pathogens. The bulk of bacterial genome sequencing at the US Food and Drug Administration is performed using short-read Illumina MiSeq technology, resulting in highly accurate but fragmented genomic sequences. The MinION sequencer from Oxford Nanopore is an evolving technology that produces long-read sequencing data with low equipment cost. The goal of this study was to compare Campylobacter genome assemblies generated from MiSeq and MinION data independently, as well as hybrid genome assemblies combining both data types. Two reference strains and two field isolates of C. jejuni were sequenced using MiSeq and MinION, and the sequence data were assembled using the software programs SPAdes and Canu, respectively. Hybrid genome assembly was performed using the program Unicycler. Comparison of the C. jejuni 81-176 and RM1221 genome assemblies to the PacBio reference genomes revealed that the SPAdes assemblies had the most accurate nucleotide identity, while the hybrid assemblies were the most contiguous. Assemblies generated only from MinION data using Canu were the least accurate, containing many indels and substitutions that affected downstream analyses. The hybrid sequencing approach was the most useful for detecting plasmids, large genome rearrangements, and repetitive elements such as rRNA and tRNA genes. The full genomes of both C. jejuni field isolates were completed and circularized using hybrid sequencing, and a plasmid was detected in one isolate. Continued development of nanopore sequencing technologies will likely enhance the accuracy of hybrid genome assemblies and enable public health laboratories to routinely generate complete circularized bacterial genome sequences.


Subject(s)
Campylobacter jejuni/genetics , Genome, Bacterial , High-Throughput Nucleotide Sequencing , Base Sequence , Campylobacter jejuni/isolation & purification , Molecular Sequence Annotation , Multilocus Sequence Typing , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...