Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Water Health ; 21(12): 1772-1783, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38153711

ABSTRACT

The WHO recommends a risk management approach to ensure safe drinking-water and sanitation, so-called Water Safety Planning and Sanitation Safety Planning. However, applying these risk management approaches separately in small-scale drinking-water supply and sanitation systems might be challenging for rural communities with limited human, financial, and administrative resources. An integrated approach seems a better option. In this study, an integrated water and sanitation safety planning (iWSSP) approach was developed together with guidance and training material for the practical application of this novel approach. The integrated approach was piloted in three small systems in rural Serbia to identify benefits and suggestions for improvement which can be used for potential future scaling-up. Implementing iWSSP at the pilot sites contributed to a better understanding of both drinking-water supply and sanitation systems. It also resulted in increased awareness, knowledge, and understanding among staff of drinking-water supply and sanitation services. Key experts, including external facilitators, played a crucial role in the implementation of iWSSP. Future scaling-up of the integrated approach could be enabled if more guidance, easy-to-use training materials and templates become available which can be adapted and updated as needed.


Subject(s)
Rural Population , Water , Humans , Sanitation , Serbia , Risk Management
2.
Ann Glob Health ; 88(1): 59, 2022.
Article in English | MEDLINE | ID: mdl-35974985

ABSTRACT

Background: Climate change, environmental change, and globalization affect the geographical distribution of vector-borne diseases. Temperate regions should be prepared for emerging diseases and learn from each other's experiences. Objectives: The vector-borne disease preparedness in two regions, Beijing and the Netherlands, were compared in order understand their similarities and differences leading to learning points on this complex topic. Methods: A comparative study was performed using interviews with vector-borne disease experts from Beijing and the Netherlands and supplemented by literature. Findings: In Beijing, syndromic surveillance is a priority for the identification of suspected vector-borne disease cases. In the Netherlands, the main surveillance emphasis is on laboratory confirmed vector-borne disease cases. Vector-surveillance at potential points of entry and other high-risk locations is performed according to the International Health Regulation (2005) in both settings. Beijing controls invasive and native mosquitos, which is not the case in the Netherlands. In Beijing, vector surveillance is performed to measure mosquito density around hospitals, this is not observed in the Dutch setting. Health risks posed by ticks are a priority in urban areas in the Netherlands, and the public is educated in self-protection. In contrast, ticks seem to occur less often in Beijing's urban areas. Conclusions: The vector-borne disease context framework allowed us to compare the vector-borne disease preparedness between Beijing and the Netherlands, despite differences in vector-borne disease challenges. We can learn valuable lessons concerning surveillance and early detection of emerging vector-borne diseases when comparing the preparedness between different regions.


Subject(s)
Culicidae , Vector Borne Diseases , Animals , Beijing/epidemiology , Humans , Mosquito Vectors , Netherlands/epidemiology , Vector Borne Diseases/epidemiology , Vector Borne Diseases/prevention & control
3.
Article in English | MEDLINE | ID: mdl-33212908

ABSTRACT

BACKGROUND: Climate change may contribute to higher incidence and wider geographic spread of vector borne diseases (VBDs). Effective monitoring and surveillance of VBDs is of paramount importance for the prevention of and timely response to outbreaks. Although international regulations exist to support this, barriers and operational challenges within countries hamper efficient monitoring. As a first step to optimise VBD surveillance and monitoring, it is important to gain a deeper understanding of system characteristics and experiences in to date non-endemic regions at risk of becoming endemic in the future. Therefore, this study qualitatively analyses the nature and flexibility of VBD surveillance and response in Beijing. METHODS: In this qualitative study, eleven experts working in Beijing's vector-borne diseases surveillance and response system were interviewed about vector-borne disease surveillance, early warning, response, and strengths and weaknesses of the current approach. RESULTS: Vector-borne disease surveillance occurs using passive syndromic surveillance and separate vector surveillance. Public health authorities use internet reporting networks to determine vector-borne disease risk across Beijing. Response toward a vector-borne disease outbreak is uncommon in this setting due to the currently low occurrence of outbreaks. CONCLUSIONS: A robust network of centralised institutions provides the continuity and flexibility needed to adapt and manage possible vector-borne disease threats. Opportunities exist for population-based health promotion and the integration of environment and climate monitoring in vector-borne disease surveillance.


Subject(s)
Disease Outbreaks , Risk Assessment , Sentinel Surveillance , Vector Borne Diseases , Animals , Beijing/epidemiology , Disease Outbreaks/prevention & control , Disease Vectors , Humans , Risk Assessment/methods , Risk Assessment/standards , Vector Borne Diseases/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...