Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 218(Pt 14): 2156-65, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25987729

ABSTRACT

Determining the location of a particular stimulus is often crucial to an animal's survival. One way to determine the local distribution of an odor is to make simultaneous comparisons across multiple sensors. If the sensors detect differences in the distribution of an odor in space, the animal can then steer toward the source. American cockroaches, Periplaneta americana, have 4 cm long antennae and are thought to track odor plumes using a spatial sampling strategy, comparing the amount of odor detected between these bilateral sensors. However, it is not uncommon for cockroaches to lose parts of their antennae and still track a wind-borne odor to its source. We examined whether bilateral odor input is necessary to locate an odor source in a wind-driven environment and how the loss of increasing lengths of the antennae affects odor tracking. The tracking performances of individuals with two bilaterally symmetrical antennae of decreasing length were compared with antennal length-matched individuals with one antenna. Cockroaches with one antenna were generally able to track an odor plume to its source. In fact, the performances of unilaterally antennectomized individuals were statistically identical to those of their bilaterally symmetrical counterparts when the combined length of both antennae equaled the length of the single antenna of the antennectomized individuals. This suggests that the total length of available antennae influences odor tracking performance more than any specific piece of antenna, and that they may be doing something more complex than a simple bilateral comparison between their antennae. The possibility of an antenna-topic map is discussed.


Subject(s)
Odorants , Periplaneta/physiology , Sex Attractants , Animals , Arthropod Antennae/physiology , Behavior, Animal , Functional Laterality , Male , Movement , Orientation , Wind
2.
PLoS One ; 7(12): e52725, 2012.
Article in English | MEDLINE | ID: mdl-23300751

ABSTRACT

Insect antennae are sensory organs involved in a variety of behaviors, sensing many different stimulus modalities. As mechanosensors, they are crucial for flight control in the hawkmoth Manduca sexta. One of their roles is to mediate compensatory reflexes of the abdomen in response to rotations of the body in the pitch axis. Abdominal motions, in turn, are a component of the steering mechanism for flying insects. Using a radio controlled, programmable, miniature stimulator, we show that ultra-low-current electrical stimulation of antennal muscles in freely-flying hawkmoths leads to repeatable, transient changes in the animals' pitch angle, as well as less predictable changes in flight speed and flight altitude. We postulate that by deflecting the antennae we indirectly stimulate mechanoreceptors at the base, which drive compensatory reflexes leading to changes in pitch attitude.


Subject(s)
Arthropod Antennae/physiology , Flight, Animal , Manduca/physiology , Mechanotransduction, Cellular , Animals , Arthropod Antennae/cytology , Arthropod Antennae/innervation , Electric Stimulation , Manduca/cytology , Mechanoreceptors/physiology , Muscles/physiology , Wireless Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...