Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vet Clin North Am Food Anim Pract ; 40(1): 131-140, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37704462

ABSTRACT

The use of in vitro embryo production (IVP) has increased globally, particularly in the United States. Although maternal factors influencing embryo development have been extensively studied, the influence of the sire is not well understood. Sperm plays a crucial role in embryo development providing DNA, triggering oocyte maturation, and aiding in mitosis. Current sire fertility measurements do not consistently align with embryo production outcomes. Low-fertility sires may perform well in IVP systems but produce fewer pregnancies. Testing sires in vitro could identify characteristics affecting embryo development and pregnancy loss risk in IVP and embryo transfer programs.


Subject(s)
Fertility , Semen , Pregnancy , Female , Male , Animals , Embryo Transfer/veterinary , Embryonic Development
2.
Reprod Fertil Dev ; 36(2): 43-50, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38064190

ABSTRACT

Existing research has primarily focused on investigating the impacts of the maternal environment, female fertility phenotype, and genetics on pregnancy loss in dairy cattle. Recently, attention has been directed toward understanding the role the sire has on embryo quality and viability. Studies have shown there is a paternal influence on early pregnancy loss, but the specific mechanisms impacting pregnancy establishment and maintenance remain unclear. Despite clear differences that sires have on pregnancy outcomes, there is a lack of evidence regarding specifically how sires influence pregnancy. Sperm characteristics, such as motility, concentration, and morphology, have been extensively studied, but further research is needed to understand what makes one sire more or less fertile than another sire and how this affects pregnancy. To effectively address pregnancy loss, a deeper understanding of the processes involved from fertilisation to blastocyst formation is essential, particularly for understanding early pregnancy loss.


Subject(s)
Abortion, Spontaneous , Pregnancy , Humans , Cattle , Animals , Male , Female , Insemination, Artificial/veterinary , Semen , Fertility , Embryonic Development/genetics
3.
J Dairy Sci ; 105(11): 9001-9011, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36085107

ABSTRACT

Recessive alleles represent genetic risk in populations that have undergone bottleneck events. We present a comprehensive framework for identification and validation of these genetic defects, including haplotype-based detection, variant selection from sequence data, and validation using knockout embryos. Holstein haplotype 2 (HH2), which causes embryonic death, was used to demonstrate the approach. Holstein haplotype 2 was identified using a deficiency-of-homozygotes approach and confirmed to negatively affect conception rate and stillbirths. Five carriers were present in a group of 183 sequenced Holstein bulls selected to maximize the coverage of unique haplotypes. Three variants concordant with haplotype calls were found in HH2: a high-priority frameshift mutation resulting, and 2 low-priority variants (1 synonymous variant, 1 premature stop codon). The frameshift in intraflagellar 80 (IFT80) was confirmed in a separate group of Holsteins from the 1000 Bull Genomes Project that shared no animals with the discovery set. IFT80-null embryos were generated by truncating the IFT80 transcript at exon 2 or 11 using a CRISPR-Cas9 system. Abattoir-derived oocytes were fertilized in vitro, and zygotes were injected at the one-cell stage either with a guide RNA and CAS9 mRNA complex (n = 100) or Cas9 mRNA (control, n = 100) before return to culture, and replicated 3 times. IFT80 is activated at the 8-cell stage, and IFT80-null embryos arrested at this stage of development, which is consistent with data from mouse hypomorphs and HH2 carrier-to-carrier matings. This frameshift in IFT80 on chromosome 1 at 107,172,615 bp (p.Leu381fs) disrupts WNT and hedgehog signaling, and is responsible for the death of homozygous embryos.


Subject(s)
Codon, Nonsense , Hedgehog Proteins , Cattle , Male , Animals , Mice , Haplotypes , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , RNA, Guide, Kinetoplastida , Homozygote , Carrier Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...