Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 14(5): 857-872, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30938974

ABSTRACT

Interleukin-17A (IL17A) plays a critical role in the development of numerous autoimmune diseases, including psoriasis. The clinical success of IL17A neutralizing biologics in psoriasis has underlined its importance as a drug discovery target. While many studies have focused on the differentiation and trafficking of IL17A producing T-helper 17 cells, less is known about IL17A-initiated signaling events in stromal and parenchymal cells leading to psoriatic phenotypes. We sought to discover signaling nodes downstream of IL17A contributing to disease pathogenesis. Using IL17A and tumor necrosis factor α (TNF) to stimulate primary human epidermal keratinocytes, we employed two different phenotypic screening approaches. First, a library of ∼22000 annotated compounds was screened for reduced secretion of the pro-inflammatory chemokine IL8. Second, a library of 729 kinases was screened in a pooled format by utilizing CRISPR-Cas9 and monitoring IL8 intracellular staining. The highest-ranking novel hits identified in both screens were the bromodomain and extra-terminal domain (BET) family proteins and bromodomain-containing protein 2 (BRD2), respectively. Comparison of BRD2, BRD3, and BRD4 silencing with siRNA and CRISPR confirmed that BRD2 was responsible for mediating IL8 production. Pan-BRD inhibitors and BRD2 knockout also reduced IL17A/TNF-mediated CXC motif chemokines 1/2/6 (CXCL1/2/6) and granulocyte colony stimulating factor (G-CSF) production. In RNA-Seq analysis, 438 IL17A/TNF dependent genes were reduced in BRD2-deficient primary keratinocytes. KEGG pathway analysis of these genes showed enrichment in TNF signaling and rheumatoid arthritis relevant genes. Moreover, a number of genes important for keratinocyte homeostasis and cornification were dysregulated in BRD2-deficient keratinocytes. In IL17A/TNF/IL22 stimulated three-dimensional organotypic raft cultures, pan-BRD inhibition reduced inflammatory factor production but elicited aberrant cornification, consistent with RNA-Seq analysis. These studies highlight a novel role for BRDs and BRD2 in particular in IL17A-mediated inflammatory signaling.


Subject(s)
Clustered Regularly Interspaced Short Palindromic Repeats , Inflammation/metabolism , Interleukin-17/metabolism , Keratinocytes/metabolism , Signal Transduction , Small Molecule Libraries/metabolism , Transcription Factors/metabolism , Cell Differentiation , Cells, Cultured , Gene Knockdown Techniques , Homeostasis , Humans , Keratinocytes/cytology , RNA, Small Interfering/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Tumor Necrosis Factor-alpha/metabolism
2.
J Med Chem ; 54(5): 1223-32, 2011 Mar 10.
Article in English | MEDLINE | ID: mdl-21309579

ABSTRACT

We present a probabilistic framework for interpreting structure-based virtual screening that returns a quantitative likelihood of observing bioactivity and can be quantitatively combined with ligand-based screening methods to yield a cumulative prediction that consistently outperforms any single screening metric. The approach has been developed and validated on more than 30 different protein targets. Transforming structure-based in silico screening results into robust probabilities of activity enables the general fusion of multiple structure- and ligand-based approaches and returns a quantitative expectation of success that can be used to prioritize (or deprioritize) further discovery activities. This unified probabilistic framework offers a paradigm shift in how docking and scoring results are interpreted, which can enhance early lead-finding efforts by maximizing the value of in silico computational tools.


Subject(s)
Ligands , Models, Molecular , Molecular Structure , Probability , Proteins/chemistry , Quantitative Structure-Activity Relationship , Databases, Factual
3.
Methods Enzymol ; 485: 293-309, 2010.
Article in English | MEDLINE | ID: mdl-21050924

ABSTRACT

Despite increasing use of cell-based assays in biomedical research and drug discovery, one challenge is the adequate supply of high-quality cells expressing the target of interest. To this end, stable cell lines expressing the target are often established, maintained, and expanded in large-scale cell culture. These steps require significant investment of time and resources. Moreover, variability occurs regularly in cell yield, viability, expression, and target activities. In particular, stable expression of many targets, such as ion channels, causes toxicity, cell line degeneration, and loss of functional activity. To circumvent these problems, we utilize large-scale transient transfection (LSTT) to generate a large quantity of cells, which are cryopreserved and readily available for use in cell-based functional assays. Here we describe the application of LSTT cells to ion channel and G protein-coupled receptor (GPCR) assays in a drug discovery setting. This approach can also be applied to many other assay formats and target classes.


Subject(s)
Drug Evaluation, Preclinical/methods , Ion Channels/metabolism , Receptors, G-Protein-Coupled/metabolism , Transfection/methods , Animals , Calcium/analysis , Calcium/metabolism , Cell Line , Cryopreservation/methods , Drug Evaluation, Preclinical/economics , Electrophysiology/methods , Fluorescence Resonance Energy Transfer/methods , Humans , Ion Channels/genetics , Receptors, G-Protein-Coupled/genetics , Transfection/economics
SELECTION OF CITATIONS
SEARCH DETAIL
...