Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jan 21.
Article in English | MEDLINE | ID: mdl-38293233

ABSTRACT

RNA polymerase II (Pol II) has a highly conserved domain, the trigger loop (TL), that controls transcription fidelity and speed. We previously probed pairwise genetic interactions between residues within and surrounding the TL and identified widespread incompatibility between TLs of different species when placed in the Saccharomyces cerevisiae Pol II context, indicating epistasis between the TL and its surrounding context. We sought to understand the nature of this incompatibility and probe higher order epistasis internal to the TL. We have employed deep mutational scanning with selected natural TL variants ("haplotypes"), and all possible intermediate substitution combinations between them and the yeast Pol II TL. We identified both positive and negative higher-order residue interactions within example TL haplotypes. Intricate higher-order epistasis formed by TL residues was sometimes only apparent from analysis of intermediate genotypes, emphasizing complexity of epistatic interactions. Furthermore, we distinguished TL substitutions with distinct classes of epistatic patterns, suggesting specific TL residues that potentially influence TL evolution. Our examples of complex residue interactions suggest possible pathways for epistasis to facilitate Pol II evolution.

2.
Front Microbiol ; 13: 1056453, 2022.
Article in English | MEDLINE | ID: mdl-36583054

ABSTRACT

Occidiofungin is a broad-spectrum antifungal compound produced by Burkholderia contaminans MS14. It is a cyclic glycol-lipopeptide with a novel beta-amino acid (NAA2) containing a hydroxylated C18 fatty acid chain with a xylose sugar. This study reports a strategy to produce semisynthetic analogs of occidiofungin to further explore the structure activity relationships of this class of compounds. Oxidative cleavage of the diol present on carbons five C(5) and six C(6) removes the xylose and twelve carbons of the fatty acid chain. The resulting cyclic peptide product, occidiofungin aldehyde, is devoid of antifungal activity. However, the free aldehyde group on this product can be subjected to reductive amination reactions to provide interesting semisynthetic analogs. This chemistry allows the quick generation of analogs to study the structure activity relationships of this class of compounds. Despite restoring the length of the aliphatic side chain by reductive amination addition with undecylamine or dodecylamine to the free aldehyde group, the obtained analogs did not demonstrate any antifungal activity. The antifungal activity was partially restored by the addition of a DL-dihydrosphingosine. The dodecylamine analog was demonstrated to still bind to the cellular target actin, suggesting that the diol on the side chain of native occidiofungin is important for entry into the cell enabling access to cellular target F-actin. These results show that the alkyl side chain on NAA2 along with the diol present on this side chain is important for occidiofungin's antifungal activity.

3.
PNAS Nexus ; 1(2)2022 May.
Article in English | MEDLINE | ID: mdl-35719892

ABSTRACT

Indole is a major component of the bacterial exometabolome, and the mechanisms for its wide-ranging effects on bacterial physiology are biomedically significant, although they remain poorly understood. Here, we determined how indole modulates the functions of a widely conserved motility apparatus, the bacterial flagellum. Our experiments in Escherichia coli revealed that indole influences the rotation rates and reversals in the flagellum's direction of rotation via multiple mechanisms. At concentrations higher than 1 mM, indole decreased the membrane potential to dissipate the power available for the rotation of the motor that operates the flagellum. Below 1 mM, indole did not dissipate the membrane potential. Instead, experiments and modeling indicated that indole weakens cooperative protein interactions within the flagellar complexes to inhibit motility. The metabolite also induced reversals in the rotational direction of the motor to promote a weak chemotactic response, even when the chemotaxis response regulator, CheY, was lacking. Experiments further revealed that indole does not require the transporter Mtr to cross the membrane and influence motor functions. Based on these findings, we propose that indole modulates intra- and inter-protein interactions in the cell to influence several physiological functions.

4.
mBio ; 13(3): e0224021, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35435702

ABSTRACT

Despite the ever-growing antibiotic resistance crisis, the rate at which new antimicrobials are being discovered and approved for human use has rapidly declined over the past 75 years. A barrier for advancing newly identified antibiotics beyond discovery is elucidating their mechanism(s) of action. Traditional approaches, such as affinity purification and isolation of resistant mutants, have proven effective but are not always viable options for identifying targets. There has been a recent explosion in research that relies on profiling methods, such as thermal proteome profiling in bacteria, for better understanding the mechanisms of discovered antimicrobials. Here, we provide an overview of the importance of target deconvolution in antimicrobial discovery, detailing traditional approaches, as well as the most recent advances in methodologies for identifying antimicrobial targets.


Subject(s)
Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Bacteria , Humans
5.
Trends Microbiol ; 29(10): 942-950, 2021 10.
Article in English | MEDLINE | ID: mdl-33288383

ABSTRACT

Potassium (K+) channels are highly conserved proteins found in all domains of life, that allow for selective movement of K+ ions across membranes. Despite their broad distribution, the physiological roles of individual members of this diverse channel family have only been thoroughly explored in eukaryotic systems, where they have critical functions in a variety of cellular processes. Recent studies have demonstrated that bacterial K+ channels have integral roles in electrical signaling, information propagation, and intercellular communication. We discuss how these novel findings impact our understanding of bacterial physiology and the need to continue to explore the native roles of ion channels in microbes.


Subject(s)
Bacteria/metabolism , Bacterial Proteins/metabolism , Potassium Channels/metabolism , Bacteria/genetics , Bacterial Proteins/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Potassium/metabolism , Potassium Channels/genetics
6.
Article in English | MEDLINE | ID: mdl-32631824

ABSTRACT

Bacterial membrane potential is difficult to measure using classical electrophysiology techniques due to the small cell size and the presence of the peptidoglycan cell wall. Instead, chemical probes are often used to study membrane potential changes under conditions of interest. Many of these probes are fluorescent molecules that accumulate in a charge-dependent manner, and the resulting fluorescence change can be analyzed via flow cytometry or using a fluorescence microplate reader. Although this technique works well in many Gram-positive bacteria, it generates fairly low signal-to-noise ratios in Gram-negative bacteria due to dye exclusion by the outer membrane. We detail an optimized workflow that uses the membrane potential probe, 3,3'-diethyloxacarbocyanine iodide [DiOC2(3)], to measure Escherichia coli membrane potential changes in high throughput and describe the assay conditions that generate significant signal-to-noise ratios to detect membrane potential changes using a fluorescence microplate reader. A valinomycin calibration curve demonstrates this approach can robustly report membrane potentials over at least an ∼144-mV range with an accuracy of ∼12 mV. As a proof of concept, we used this approach to characterize the effects of some commercially available small molecules known to elicit membrane potential changes in other systems, increasing the repertoire of compounds known to perturb E. coli membrane energetics. One compound, the eukaryotic Ca2+ channel blocker amlodipine, was found to alter E. coli membrane potential and decrease the MIC of kanamycin, further supporting the value of this screening approach. This detailed methodology permits studying E. coli membrane potential changes quickly and reliably at the population level.


Subject(s)
Biological Assay , Escherichia coli , Membrane Potentials , Gram-Negative Bacteria , Valinomycin
7.
Nat Commun ; 11(1): 547, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992706

ABSTRACT

TrkH is a bacterial ion channel implicated in K+ uptake and pH regulation. TrkH assembles with its regulatory protein, TrkA, which closes the channel when bound to ADP and opens it when bound to ATP. However, it is unknown how nucleotides control the gating of TrkH through TrkA. Here we report the structures of the TrkH-TrkA complex in the presence of ADP or ATP. TrkA forms a tetrameric ring when bound to ADP and constrains TrkH to a closed conformation. The TrkA ring splits into two TrkA dimers in the presence of ATP and releases the constraints on TrkH, resulting in an open channel conformation. Functional studies show that both the tetramer-to-dimer conversion of TrkA and the loss of constraints on TrkH are required for channel gating. In addition, deletion of TrkA in Escherichia coli depolarizes the cell, suggesting that the TrkH-TrkA complex couples changes in intracellular nucleotides to membrane potential.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Membrane Potentials/physiology , Potassium Channels/chemistry , Potassium Channels/metabolism , ATP-Binding Cassette Transporters/genetics , Adenosine Diphosphate , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Biological Transport/physiology , Escherichia coli/genetics , Escherichia coli Proteins/genetics , Models, Molecular , Mutagenesis , Potassium/metabolism , Potassium Channels/genetics , Protein Conformation , Protein Interaction Domains and Motifs , Sequence Deletion , Vibrio parahaemolyticus/genetics , X-Ray Diffraction
8.
Article in English | MEDLINE | ID: mdl-30323040

ABSTRACT

Occidiofungin is produced by the soil bacterium Burkolderia contaminans MS14 and is structurally similar or identical to the burkholdines, xylocandins, and cepacidines. This study identified the primary cellular target of occidiofungin, which was determined to be actin. The modification of occidiofungin with a functional alkyne group enabled affinity purification assays and localization studies in yeast. Occidiofungin has a subtle effect on actin dynamics that triggers apoptotic cell death. We demonstrate the highly specific localization of occidiofungin to cellular regions rich in actin in yeast and the binding of occidiofungin to purified actin in vitro Furthermore, a disruption of actin-mediated cellular processes, such as endocytosis, nuclear segregation, and hyphal formation, was observed. All of these processes require the formation of stable actin cables, which are disrupted following the addition of a subinhibitory concentration of occidiofungin. We were also able to demonstrate the effectiveness of occidiofungin in treating a vulvovaginal yeast infection in a murine model. The results of this study are important for the development of an efficacious novel class of actin binding drugs that may fill the existing gap in treatment options for fungal infections or different types of cancer.


Subject(s)
Actins/metabolism , Antifungal Agents/therapeutic use , Burkholderia/metabolism , Candidiasis, Vulvovaginal/drug therapy , Glycopeptides/metabolism , Glycopeptides/therapeutic use , Peptides, Cyclic/metabolism , Peptides, Cyclic/therapeutic use , Animals , Candida/drug effects , Female , Glycopeptides/chemistry , Mice , Mice, Inbred BALB C , Peptides, Cyclic/chemistry
9.
Metallomics ; 10(9): 1211-1222, 2018 09 19.
Article in English | MEDLINE | ID: mdl-30063057

ABSTRACT

Lead (Pb) is a potent neurotoxin that disrupts synaptic neurotransmission. We report that Synaptotagmin I (SytI), a key regulator of Ca2+-evoked neurotransmitter release, has two high-affinity Pb2+ binding sites that belong to its cytosolic C2A and C2B domains. The crystal structures of Pb2+-complexed C2 domains revealed that protein-bound Pb2+ ions have holodirected coordination geometries and all-oxygen coordination spheres. The on-rate constants of Pb2+ binding to the C2 domains of SytI are comparable to those of Ca2+ and are diffusion-limited. In contrast, the off-rate constants are at least two orders of magnitude smaller, indicating that Pb2+ can serve as both a thermodynamic and kinetic trap for the C2 domains. We demonstrate, using NMR spectroscopy, that population of these sites by Pb2+ ions inhibits further Ca2+ binding despite the existing coordination vacancies. Our work offers a unique insight into the bioinorganic chemistry of Pb(ii) and suggests a mechanism by which low concentrations of Pb2+ ions can interfere with the Ca2+-dependent function of SytI in the cell.


Subject(s)
Lead/metabolism , Synaptotagmin I/metabolism , Animals , Binding Sites , Humans , Magnetic Resonance Spectroscopy , Protein Domains , Thermodynamics
11.
Methods Mol Biol ; 1684: 289-303, 2018.
Article in English | MEDLINE | ID: mdl-29058200

ABSTRACT

Isothermal titration calorimetry (ITC) is an emerging, label-free technology used to measure ligand binding to membrane proteins. This technology utilizes a titration calorimeter to measure the heat exchange upon ligands binding to proteins, the magnitude of which is based on the overall enthalpy of the reaction. In this protocol, the steps we and others use to measure ion binding to ion transport proteins are described.


Subject(s)
Carrier Proteins/metabolism , Ions/metabolism , Calorimetry , Hot Temperature , Protein Binding , Thermodynamics
12.
J Biol Chem ; 292(25): 10735-10742, 2017 06 23.
Article in English | MEDLINE | ID: mdl-28487371

ABSTRACT

Clostridium difficile has become one of the most common bacterial pathogens in hospital-acquired infections in the United States. Although C. difficile is strictly anaerobic, it survives in aerobic environments and transmits between hosts via spores. C. difficile spore germination is triggered in response to certain bile acids and glycine. Although glycine is the most effective co-germinant, other amino acids can substitute with varying efficiencies. Of these, l-alanine is an effective co-germinant and is also a germinant for most bacterial spores. Many endospore-forming bacteria embed alanine racemases into their spore coats, and these enzymes are thought to convert the l-alanine germinant into d-alanine, a spore germination inhibitor. Although the C. difficile Alr2 racemase is the sixth most highly expressed gene during C. difficile spore formation, a previous study reported that Alr2 has little to no role in germination of C. difficile spores in rich medium. Here, we hypothesized that Alr2 could affect C. difficile l-alanine-induced spore germination in a defined medium. We found that alr2 mutant spores more readily germinate in response to l-alanine as a co-germinant. Surprisingly, d-alanine also functioned as a co-germinant. Moreover, we found that Alr2 could interconvert l- and d-serine and that Alr2 bound to l- and d-serine with ∼2-fold weaker affinity to that of l- and d-alanine. Finally, we demonstrate that l- and d-serine are also co-germinants for C. difficile spores. These results suggest that C. difficile spores can respond to a diverse set of amino acid co-germinants and reveal that Alr2 can accommodate serine as a substrate.


Subject(s)
Alanine Racemase/metabolism , Bacterial Proteins/metabolism , Clostridioides difficile/enzymology , Spores, Bacterial/enzymology , Alanine/metabolism , Alanine Racemase/genetics , Bacterial Proteins/genetics , Clostridioides difficile/genetics , Serine/metabolism , Spores, Bacterial/genetics
13.
Anal Chem ; 88(10): 5549-53, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27092566

ABSTRACT

There is a growing need to study ligand binding to proteins in native or complex solution using isothermal titration calorimetry (ITC). For example, it is desirable to measure ligand binding to membrane proteins in more native lipid-like environments such as bicelles, where ligands can access both sides of the membrane in a homogeneous environment. A critical step to obtain high signal-to-noise is matching the reaction chamber solution to the ligand solution, typically through a final dialysis or gel filtration step. However, to obtain reproducible bicelles, the lipid concentrations must be carefully controlled which eliminates the use of dialysis that can disrupt these parameters. Here, we report and validate a rapid preparation ITC (RP-ITC) approach to measure ligand binding without the need for a dialysis step. This general approach is used to quantify ion binding to a K(+) channel embedded in bicelles and can be applied to complex, less defined systems.


Subject(s)
Bacterial Proteins/metabolism , Calorimetry , Ligands , Potassium Channels/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Buffers , Calcium Chloride/chemistry , Edetic Acid/chemistry , Lipid Bilayers/chemistry , Potassium/chemistry , Potassium/metabolism , Potassium Channels/chemistry , Potassium Channels/genetics , Protein Binding , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Streptomyces/metabolism
14.
Proc Natl Acad Sci U S A ; 112(49): 15096-100, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26598654

ABSTRACT

K(+) channels are membrane proteins that selectively conduct K(+) ions across lipid bilayers. Many voltage-gated K(+) (KV) channels contain two gates, one at the bundle crossing on the intracellular side of the membrane and another in the selectivity filter. The gate at the bundle crossing is responsible for channel opening in response to a voltage stimulus, whereas the gate at the selectivity filter is responsible for C-type inactivation. Together, these regions determine when the channel conducts ions. The K(+) channel from Streptomyces lividians (KcsA) undergoes an inactivation process that is functionally similar to KV channels, which has led to its use as a practical system to study inactivation. Crystal structures of KcsA channels with an open intracellular gate revealed a selectivity filter in a constricted conformation similar to the structure observed in closed KcsA containing only Na(+) or low [K(+)]. However, recent work using a semisynthetic channel that is unable to adopt a constricted filter but inactivates like WT channels challenges this idea. In this study, we measured the equilibrium ion-binding properties of channels with conductive, inactivated, and constricted filters using isothermal titration calorimetry (ITC). EPR spectroscopy was used to determine the state of the intracellular gate of the channel, which we found can depend on the presence or absence of a lipid bilayer. Overall, we discovered that K(+) ion binding to channels with an inactivated or conductive selectivity filter is different from K(+) ion binding to channels with a constricted filter, suggesting that the structures of these channels are different.


Subject(s)
Potassium/metabolism , Detergents/chemistry , Ion Channel Gating , Lipid Bilayers , Potassium/chemistry , Protein Conformation
16.
J Gen Physiol ; 146(1): 3-13, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26078056

ABSTRACT

The crystal structures of channels and transporters reveal the chemical nature of ion-binding sites and, thereby, constrain mechanistic models for their transport processes. However, these structures, in and of themselves, do not reveal equilibrium selectivity or transport preferences, which can be discerned only from various functional assays. In this Review, I explore the relationship between cation transport protein structures, equilibrium binding measurements, and ion transport selectivity. The primary focus is on K(+)-selective channels and nonselective cation channels because they have been extensively studied both functionally and structurally, but the principles discussed are relevant to other transport proteins and molecules.


Subject(s)
Binding Sites/physiology , Cations/metabolism , Ion Channel Gating/physiology , Ion Transport/physiology , Crystallography, X-Ray/methods , Kinetics , Potassium Channels/metabolism
17.
Plant Physiol ; 167(3): 628-38, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25624397

ABSTRACT

Despite variable and often scarce supplies of inorganic phosphate (Pi) from soils, plants must distribute appropriate amounts of Pi to each cell and subcellular compartment to sustain essential metabolic activities. The ability to monitor Pi dynamics with subcellular resolution in live plants is, therefore, critical for understanding how this essential nutrient is acquired, mobilized, recycled, and stored. Fluorescence indicator protein for inorganic phosphate (FLIPPi) sensors are genetically encoded fluorescence resonance energy transfer-based sensors that have been used to monitor Pi dynamics in cultured animal cells. Here, we present a series of Pi sensors optimized for use in plants. Substitution of the enhanced yellow fluorescent protein component of a FLIPPi sensor with a circularly permuted version of Venus enhanced sensor dynamic range nearly 2.5-fold. The resulting circularly permuted FLIPPi sensor was subjected to a high-efficiency mutagenesis strategy that relied on statistical coupling analysis to identify regions of the protein likely to influence Pi affinity. A series of affinity mutants was selected with dissociation constant values of 0.08 to 11 mm, which span the range for most plant cell compartments. The sensors were expressed in Arabidopsis (Arabidopsis thaliana), and ratiometric imaging was used to monitor cytosolic Pi dynamics in root cells in response to Pi deprivation and resupply. Moreover, plastid-targeted versions of the sensors expressed in the wild type and a mutant lacking the PHOSPHATE TRANSPORT4;2 plastidic Pi transporter confirmed a physiological role for this transporter in Pi export from root plastids. These circularly permuted FLIPPi sensors, therefore, enable detailed analysis of Pi dynamics with subcellular resolution in live plants.


Subject(s)
Arabidopsis/cytology , Arabidopsis/metabolism , Imaging, Three-Dimensional , Phosphates/metabolism , Biological Transport , Cytosol/metabolism , Fluorescence Resonance Energy Transfer , Hydrogen-Ion Concentration , Luminescent Proteins/metabolism , Mutation/genetics , Phosphates/pharmacology , Plant Epidermis/cytology , Plant Epidermis/drug effects , Plant Roots/cytology , Plant Roots/drug effects , Plastids/metabolism , Subcellular Fractions/drug effects , Subcellular Fractions/metabolism
18.
PLoS Biol ; 12(7): e1001911, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25051182

ABSTRACT

Membrane-embedded prenyltransferases from the UbiA family catalyze the Mg2+-dependent transfer of a hydrophobic polyprenyl chain onto a variety of acceptor molecules and are involved in the synthesis of molecules that mediate electron transport, including Vitamin K and Coenzyme Q. In humans, missense mutations to the protein UbiA prenyltransferase domain-containing 1 (UBIAD1) are responsible for Schnyder crystalline corneal dystrophy, which is a genetic disease that causes blindness. Mechanistic understanding of this family of enzymes has been hampered by a lack of three-dimensional structures. We have solved structures of a UBIAD1 homolog from Archaeoglobus fulgidus, AfUbiA, in an unliganded form and bound to Mg2+ and two different isoprenyl diphosphates. Functional assays on MenA, a UbiA family member from E. coli, verified the importance of residues involved in Mg2+ and substrate binding. The structural and functional studies led us to propose a mechanism for the prenyl transfer reaction. Disease-causing mutations in UBIAD1 are clustered around the active site in AfUbiA, suggesting the mechanism of catalysis is conserved between the two homologs.


Subject(s)
Dimethylallyltranstransferase/chemistry , Amino Acid Sequence , Archaeoglobus fulgidus/enzymology , Catalytic Domain , Cell Membrane/enzymology , Crystallography, X-Ray , Dimethylallyltranstransferase/genetics , Humans , Magnesium/chemistry , Models, Molecular , Protein Binding , Sequence Homology, Amino Acid
19.
Nat Commun ; 4: 2746, 2013.
Article in English | MEDLINE | ID: mdl-24217508

ABSTRACT

Potassium (K(+)) channels are selective for K(+) over Na(+) ions during their transport across membranes. We and others have previously shown that tetrameric K(+) channels are primarily occupied by K(+) ions in their selectivity filters under physiological conditions, demonstrating the channel's intrinsic equilibrium preference for K(+) ions. Based on this observation, we hypothesize that the preference for K(+) ions over Na(+) ions in the filter determines its selectivity during ion conduction. Here, we ask whether non-selective cation channels, which share an overall structure and similar individual ion-binding sites with K(+) channels, have an ion preference at equilibrium. The variants of the non-selective Bacillus cereus NaK cation channel we examine are all selective for K(+) over Na(+) ions at equilibrium. Thus, the detailed architecture of the K(+) channel selectivity filter, and not only its equilibrium ion preference, is fundamental to the generation of selectivity during ion conduction.


Subject(s)
Bacterial Proteins/physiology , Potassium Channels/metabolism , Potassium/metabolism , Amino Acid Sequence , Ion Channel Gating/physiology , Models, Molecular , Molecular Sequence Data , Potassium Channels/chemistry , Potassium Channels/physiology , Protein Conformation
20.
J Gen Physiol ; 140(6): 671-9, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23148260

ABSTRACT

K(+) channels exhibit strong selectivity for K(+) ions over Na(+) ions based on electrophysiology experiments that measure ions competing for passage through the channel. During this conduction process, multiple ions interact within the region of the channel called the selectivity filter. Ion selectivity may arise from an equilibrium preference for K(+) ions within the selectivity filter or from a kinetic mechanism whereby Na(+) ions are precluded from entering the selectivity filter. Here, we measure the equilibrium affinity and selectivity of K(+) and Na(+) ions binding to two different K(+) channels, KcsA and MthK, using isothermal titration calorimetry. Both channels exhibit a large preference for K(+) over Na(+) ions at equilibrium, in line with electrophysiology recordings of reversal potentials and Ba(2+) block experiments used to measure the selectivity of the external-most ion-binding sites. These results suggest that the high selectivity observed during ion conduction can originate from a strong equilibrium preference for K(+) ions in the selectivity filter, and that K(+) selectivity is an intrinsic property of the filter. We hypothesize that the equilibrium preference for K(+) ions originates in part through the optimal spacing between sites to accommodate multiple K(+) ions within the selectivity filter.


Subject(s)
Ion Channel Gating/physiology , Potassium Channels/metabolism , Potassium/metabolism , Binding Sites/genetics , Binding Sites/physiology , Cations/metabolism , Escherichia coli/genetics , Ion Channel Gating/genetics , Potassium Channels/genetics , Sodium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...