Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Dyn Med ; 8: 6, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-20034396

ABSTRACT

Creatine supplementation has been found to significantly increase muscle strength and hypertrophy in young adults (

2.
J Strength Cond Res ; 23(4): 1068-76, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19528870

ABSTRACT

Anthropometric equations, based on 2-compartment models, have been routinely used to estimate body composition in female college athletes; however, these equations are not without error. In an attempt to decrease the error associated with anthropometric equations, updated equations were developed using multiple-compartment models, although the validity of these equations has not yet been established. The purpose of the current investigation was to determine the validity of the updated anthropometric equations and compare them with previously validated generalized equations for estimating percent fat (%fat) in female athletes. Twenty-nine white female NCAA Division I athletes (20 +/- 1 years) volunteered to have their %fat estimated using anthropometric measurements. Skinfold equations included generalized and updated equations and a height and weight-based equation. %fat values were compared with a criterion 4-compartment model. All equations produced low total error (TE) (< or =3.38%fat) and SEE values (< or =2.97%fat) and high r values (r > or = 0.78). The 2 updated skinfold equations produced the highest constant error (CE) values, but the tightest limits of agreement (< or = -1.58 +/- 4.86%fat; CE +/- 2SD) compared with the 3 generalized Jackson et al. equations (< or =0.92 +/- 5.34%fat), whereas the limits of agreement for the height and weight-based equation (+/- 6.00%fat) were the widest. Compared with the updated skinfold equations, the generalized Jackson et al. skinfold equations produced nearly identical TE values. Results suggest that the updated skinfold equations are valid but not superior to the generalized Jackson et al. equations, and the height and weight-based equation of Fornetti et al. is not recommended due to the large individual error in this population. Additionally, more than 3 skinfold sites did not improve %fat values. Therefore, the Jackson et al. sum of 3 skinfold equation is the suggested skinfold equation in the white female NCAA Division I athletes.


Subject(s)
Anthropometry/methods , Body Fat Distribution , Sports , Absorptiometry, Photon , Body Height , Body Weight , Bone Density , Electric Impedance , Female , Humans , Skinfold Thickness , Young Adult
3.
Dyn Med ; 7: 7, 2008 Apr 21.
Article in English | MEDLINE | ID: mdl-18426582

ABSTRACT

BACKGROUND: Methods used to estimate percent body fat can be classified as a laboratory or field technique. However, the validity of these methods compared to multiple-compartment models has not been fully established. The purpose of this study was to determine the validity of field and laboratory methods for estimating percent fat (%fat) in healthy college-age men compared to the Siri three-compartment model (3C). METHODS: Thirty-one Caucasian men (22.5 +/- 2.7 yrs; 175.6 +/- 6.3 cm; 76.4 +/- 10.3 kg) had their %fat estimated by bioelectrical impedance analysis (BIA) using the BodyGram computer program (BIA-AK) and population-specific equation (BIA-Lohman), near-infrared interactance (NIR) (Futrex(R) 6100/XL), four circumference-based military equations [Marine Corps (MC), Navy and Air Force (NAF), Army (A), and Friedl], air-displacement plethysmography (BP), and hydrostatic weighing (HW). RESULTS: All circumference-based military equations (MC = 4.7% fat, NAF = 5.2% fat, A = 4.7% fat, Friedl = 4.7% fat) along with NIR (NIR = 5.1% fat) produced an unacceptable total error (TE). Both laboratory methods produced acceptable TE values (HW = 2.5% fat; BP = 2.7% fat). The BIA-AK, and BIA-Lohman field methods produced acceptable TE values (2.1% fat). A significant difference was observed for the MC and NAF equations compared to both the 3C model and HW (p < 0.006). CONCLUSION: Results indicate that the BP and HW are valid laboratory methods when compared to the 3C model to estimate %fat in college-age Caucasian men. When the use of a laboratory method is not feasible, BIA-AK, and BIA-Lohman are acceptable field methods to estimate %fat in this population.

SELECTION OF CITATIONS
SEARCH DETAIL
...