Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Immunol ; 7(70): eabj1640, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35486676

ABSTRACT

Humans have four IgG antibody subclasses that selectively or differentially engage immune effector molecules to protect against infections. Although IgG1 has been studied in detail and is the subclass of most approved antibody therapeutics, increasing evidence indicates that IgG3 is associated with enhanced protection against pathogens. Here, we report that IgG3 has superior capacity to mediate intracellular antiviral immunity compared with the other subclasses due to its uniquely extended and flexible hinge region, which facilitates improved recruitment of the cytosolic Fc receptor TRIM21, independently of Fc binding affinity. TRIM21 may also synergize with complement C1/C4-mediated lysosomal degradation via capsid inactivation. We demonstrate that this process is potentiated by IgG3 in a hinge-dependent manner. Our findings reveal differences in how the four IgG subclasses mediate intracellular immunity, knowledge that may guide IgG subclass selection and engineering of antiviral antibodies for prophylaxis and therapy.


Subject(s)
Antiviral Agents , Immunoglobulin G , Antibodies, Viral , Complement System Proteins , Humans , Receptors, Fc
2.
Sci Transl Med ; 12(565)2020 10 14.
Article in English | MEDLINE | ID: mdl-33055243

ABSTRACT

Needle-free uptake across mucosal barriers is a preferred route for delivery of biologics, but the efficiency of unassisted transmucosal transport is poor. To make administration and therapy efficient and convenient, strategies for the delivery of biologics must enhance both transcellular delivery and plasma half-life. We found that human albumin was transcytosed efficiently across polarized human epithelial cells by a mechanism that depends on the neonatal Fc receptor (FcRn). FcRn also transported immunoglobulin G, but twofold less than albumin. We therefore designed a human albumin variant, E505Q/T527M/K573P (QMP), with improved FcRn binding, resulting in enhanced transcellular transport upon intranasal delivery and extended plasma half-life of albumin in transgenic mice expressing human FcRn. When QMP was fused to recombinant activated coagulation factor VII, the half-life of the fusion molecule increased 3.6-fold compared with the wild-type human albumin fusion, without compromising the therapeutic properties of activated factor VII. Our findings highlight QMP as a suitable carrier of protein-based biologics that may enhance plasma half-life and delivery across mucosal barriers.


Subject(s)
Biological Products , Serum Albumin, Human , Albumins , Half-Life , Histocompatibility Antigens Class I , Receptors, Fc , Recombinant Fusion Proteins
3.
Cell Host Microbe ; 25(4): 617-629.e7, 2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30926239

ABSTRACT

The complement system is vital for anti-microbial defense. In the classical pathway, pathogen-bound antibody recruits the C1 complex (C1qC1r2C1s2) that initiates a cleavage cascade involving C2, C3, C4, and C5 and triggering microbial clearance. We demonstrate a C4-dependent antiviral mechanism that is independent of downstream complement components. C4 inhibits human adenovirus infection by directly inactivating the virus capsid. Rapid C4 activation and capsid deposition of cleaved C4b are catalyzed by antibodies via the classical pathway. Capsid-deposited C4b neutralizes infection independent of C2 and C3 but requires C1q antibody engagement. C4b inhibits capsid disassembly, preventing endosomal escape and cytosolic access. C4-deficient mice exhibit heightened viral burdens. Additionally, complement synergizes with the Fc receptor TRIM21 to block transduction by an adenovirus gene therapy vector but is partially restored by Fab virus shielding. These results suggest that the complement system could be altered to prevent virus infection and enhance virus gene therapy efficacy.


Subject(s)
Adenovirus Infections, Human/immunology , Adenoviruses, Human/immunology , Capsid/metabolism , Complement C4/metabolism , Immunity, Humoral , Immunologic Factors/metabolism , Virus Inactivation , Animals , Antibodies, Viral/metabolism , Cell Line , Complement C1/metabolism , Disease Models, Animal , Mice , Mice, Knockout , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...