Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Environ Microbiol ; 21(10): 3696-3710, 2019 10.
Article in English | MEDLINE | ID: mdl-31188531

ABSTRACT

Species in the archaeal order Sulfolobales thrive in hot acid and exhibit remarkable metabolic diversity. Some species are chemolithoautotrophic, obtaining energy through the oxidation of inorganic substrates, sulphur in particular, and acquiring carbon through the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) CO2 -fixation cycle. The current model for sulphur oxidation in the Sulfolobales is based on the biochemical analysis of specific proteins from Acidianus ambivalens, including sulphur oxygenase reductase (SOR) that disproportionates S° into H2 S and sulphite (SO3 2- ). Initial studies indicated SOR catalyses the essential first step in oxidation of elemental sulphur, but an ancillary role for SOR as a 'recycle' enzyme has also been proposed. Here, heterologous expression of both SOR and membrane-bound thiosulphate-quinone oxidoreductase (TQO) from Sulfolobus tokodaii 'restored' sulphur oxidation capacity in Sulfolobus acidocaldarius DSM639, but not autotrophy, although earlier reports indicate this strain was once capable of chemolithoautotrophy. Comparative transcriptomic analyses of Acidianus brierleyi, a chemolithoautotrophic sulphur oxidizer, and S. acidocaldarius DSM639 showed that while both share a strong transcriptional response to elemental sulphur, S. acidocaldarius DSM639 failed to upregulate key 3-HP/4-HB cycle genes used by A. brierleyi to drive chemolithoautotrophy. Thus, the inability for S. acidocaldarius DSM639 to grow chemolithoautotrophically may be rooted more in gene regulation than the biochemical capacity.


Subject(s)
Chemoautotrophic Growth , Sulfolobales/metabolism , Sulfur/metabolism , Autotrophic Processes , Oxidation-Reduction , Oxidoreductases/metabolism , Thiosulfates/metabolism
2.
Appl Environ Microbiol ; 84(9)2018 05 01.
Article in English | MEDLINE | ID: mdl-29475869

ABSTRACT

Metagenomic data from Obsidian Pool (Yellowstone National Park, USA) and 13 genome sequences were used to reassess genus-wide biodiversity for the extremely thermophilic Caldicellulosiruptor The updated core genome contains 1,401 ortholog groups (average genome size for 13 species = 2,516 genes). The pangenome, which remains open with a revised total of 3,493 ortholog groups, encodes a variety of multidomain glycoside hydrolases (GHs). These include three cellulases with GH48 domains that are colocated in the glucan degradation locus (GDL) and are specific determinants for microcrystalline cellulose utilization. Three recently sequenced species, Caldicellulosiruptor sp. strain Rt8.B8 (renamed here Caldicellulosiruptor morganii), Thermoanaerobacter cellulolyticus strain NA10 (renamed here Caldicellulosiruptor naganoensis), and Caldicellulosiruptor sp. strain Wai35.B1 (renamed here Caldicellulosiruptor danielii), degraded Avicel and lignocellulose (switchgrass). C. morganii was more efficient than Caldicellulosiruptor bescii in this regard and differed from the other 12 species examined, both based on genome content and organization and in the specific domain features of conserved GHs. Metagenomic analysis of lignocellulose-enriched samples from Obsidian Pool revealed limited new information on genus biodiversity. Enrichments yielded genomic signatures closely related to that of Caldicellulosiruptor obsidiansis, but there was also evidence for other thermophilic fermentative anaerobes (Caldanaerobacter, Fervidobacterium, Caloramator, and Clostridium). One enrichment, containing 89.8% Caldicellulosiruptor and 9.7% Caloramator, had a capacity for switchgrass solubilization comparable to that of C. bescii These results refine the known biodiversity of Caldicellulosiruptor and indicate that microcrystalline cellulose degradation at temperatures above 70°C, based on current information, is limited to certain members of this genus that produce GH48 domain-containing enzymes.IMPORTANCE The genus Caldicellulosiruptor contains the most thermophilic bacteria capable of lignocellulose deconstruction, which are promising candidates for consolidated bioprocessing for the production of biofuels and bio-based chemicals. The focus here is on the extant capability of this genus for plant biomass degradation and the extent to which this can be inferred from the core and pangenomes, based on analysis of 13 species and metagenomic sequence information from environmental samples. Key to microcrystalline hydrolysis is the content of the glucan degradation locus (GDL), a set of genes encoding glycoside hydrolases (GHs), several of which have GH48 and family 3 carbohydrate binding module domains, that function as primary cellulases. Resolving the relationship between the GDL and lignocellulose degradation will inform efforts to identify more prolific members of the genus and to develop metabolic engineering strategies to improve this characteristic.


Subject(s)
Firmicutes/genetics , Firmicutes/metabolism , Genome, Bacterial , Lignin/metabolism , Metagenome , Cellulose/metabolism , Firmicutes/classification , Genomics , Metagenomics
3.
Biotechnol Bioeng ; 114(12): 2947-2954, 2017 12.
Article in English | MEDLINE | ID: mdl-28840937

ABSTRACT

The archaeon Pyrococcus furiosus is emerging as a metabolic engineering platform for production of fuels and chemicals, such that more must be known about this organism's characteristics in bioprocessing contexts. Its ability to grow at temperatures from 70 to greater than 100°C and thereby avoid contamination, offers the opportunity for long duration, continuous bioprocesses as an alternative to batch systems. Toward that end, we analyzed the transcriptome of P. furiosus to reveal its metabolic state during different growth modes that are relevant to bioprocessing. As cells progressed from exponential to stationary phase in batch cultures, genes involved in biosynthetic pathways important to replacing diminishing supplies of key nutrients and genes responsible for the onset of stress responses were up-regulated. In contrast, during continuous culture, the progression to higher dilution rates down-regulated many biosynthetic processes as nutrient supplies were increased. Most interesting was the contrast between batch exponential phase and continuous culture at comparable growth rates (∼0.4 hr-1 ), where over 200 genes were differentially transcribed, indicating among other things, N-limitation in the chemostat and the onset of oxidative stress. The results here suggest that cellular processes involved in carbon and electron flux in P. furiosus were significantly impacted by growth mode, phase and rate, factors that need to be taken into account when developing successful metabolic engineering strategies.


Subject(s)
Archaeal Proteins/metabolism , Batch Cell Culture Techniques/methods , Cell Proliferation/physiology , Energy Metabolism/physiology , Pyrococcus furiosus/growth & development , Pyrococcus furiosus/metabolism , Transcriptome/physiology
4.
Metab Eng ; 38: 446-463, 2016 11.
Article in English | MEDLINE | ID: mdl-27771364

ABSTRACT

The 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle fixes CO2 in extremely thermoacidophilic archaea and holds promise for metabolic engineering because of its thermostability and potentially rapid pathway kinetics. A reaction kinetics model was developed to examine the biological and biotechnological attributes of the 3HP/4HB cycle as it operates in Metallosphaera sedula, based on previous information as well as on kinetic parameters determined here for recombinant versions of five of the cycle enzymes (malonyl-CoA/succinyl-CoA reductase, 3-hydroxypropionyl-CoA synthetase, 3-hydroxypropionyl-CoA dehydratase, acryloyl-CoA reductase, and succinic semialdehyde reductase). The model correctly predicted previously observed features of the cycle: the 35-65% split of carbon flux through the acetyl-CoA and succinate branches, the high abundance and relative ratio of acetyl-CoA/propionyl-CoA carboxylase (ACC) and MCR, and the significance of ACC and hydroxybutyryl-CoA synthetase (HBCS) as regulated control points for the cycle. The model was then used to assess metabolic engineering strategies for incorporating CO2 into chemical intermediates and products of biotechnological importance: acetyl-CoA, succinate, and 3-hydroxypropionate.


Subject(s)
Carbon Dioxide/metabolism , Hydroxybutyrates/metabolism , Lactic Acid/analogs & derivatives , Metabolic Flux Analysis/methods , Metabolic Networks and Pathways/physiology , Models, Biological , Sulfolobaceae/metabolism , Archaea/metabolism , Extremophiles/metabolism , Kinetics , Lactic Acid/metabolism , Metabolic Clearance Rate , Signal Transduction/physiology
5.
Biotechnol Bioeng ; 113(12): 2652-2660, 2016 12.
Article in English | MEDLINE | ID: mdl-27315782

ABSTRACT

Acetyl-Coenzyme A carboxylase (ACC), malonyl-CoA reductase (MCR), and malonic semialdehyde reductase (MRS) convert HCO3- and acetyl-CoA into 3-hydroxypropionate (3HP) in the 3-hydroxypropionate/4-hydroxybutyrate carbon fixation cycle resident in the extremely thermoacidophilic archaeon Metallosphaera sedula. These three enzymes, when introduced into the hyperthermophilic archaeon Pyrococcus furiosus, enable production of 3HP from maltose and CO2 . Sub-optimal function of ACC was hypothesized to be limiting for production of 3HP, so accessory enzymes carbonic anhydrase (CA) and biotin protein ligase (BPL) from M. sedula were produced recombinantly in Escherichia coli to assess their function. P. furiosus lacks a native, functional CA, while the M. sedula CA (Msed_0390) has a specific activity comparable to other microbial versions of this enzyme. M. sedula BPL (Msed_2010) was shown to biotinylate the ß-subunit (biotin carboxyl carrier protein) of the ACC in vitro. Since the native BPLs in E. coli and P. furiosus may not adequately biotinylate the M. sedula ACC, the carboxylase was produced in P. furiosus by co-expression with the M. sedula BPL. The baseline production strain, containing only the ACC, MCR, and MSR, grown in a CO2 -sparged bioreactor reached titers of approximately 40 mg/L 3HP. Strains in which either the CA or BPL accessory enzyme from M. sedula was added to the pathway resulted in improved titers, 120 or 370 mg/L, respectively. The addition of both M. sedula CA and BPL, however, yielded intermediate titers of 3HP (240 mg/L), indicating that the effects of CA and BPL on the engineered 3HP pathway were not additive, possible reasons for which are discussed. While further efforts to improve 3HP production by regulating gene dosage, improving carbon flux and optimizing bioreactor operation are needed, these results illustrate the ancillary benefits of accessory enzymes for incorporating CO2 into 3HP production in metabolically engineered P. furiosus, and hint at the important role that CA and BPL likely play in the native 3HP/4HB pathway in M. sedula. Biotechnol. Bioeng. 2016;113: 2652-2660. © 2016 Wiley Periodicals, Inc.


Subject(s)
Carbon Dioxide/metabolism , Carbon-Nitrogen Ligases/metabolism , Carbonic Anhydrases/genetics , Escherichia coli Proteins/metabolism , Lactic Acid/analogs & derivatives , Metabolic Engineering/methods , Pyrococcus furiosus/physiology , Repressor Proteins/metabolism , Carbon Dioxide/chemistry , Lactic Acid/biosynthesis , Lactic Acid/chemistry , Protein Engineering/methods , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sulfolobaceae/genetics , Sulfolobaceae/metabolism
6.
Front Microbiol ; 6: 1209, 2015.
Article in English | MEDLINE | ID: mdl-26594201

ABSTRACT

Enzymes from extremely thermophilic microorganisms have been of technological interest for some time because of their ability to catalyze reactions of industrial significance at elevated temperatures. Thermophilic enzymes are now routinely produced in recombinant mesophilic hosts for use as discrete biocatalysts. Genome and metagenome sequence data for extreme thermophiles provide useful information for putative biocatalysts for a wide range of biotransformations, albeit involving at most a few enzymatic steps. However, in the past several years, unprecedented progress has been made in establishing molecular genetics tools for extreme thermophiles to the point that the use of these microorganisms as metabolic engineering platforms has become possible. While in its early days, complex metabolic pathways have been altered or engineered into recombinant extreme thermophiles, such that the production of fuels and chemicals at elevated temperatures has become possible. Not only does this expand the thermal range for industrial biotechnology, it also potentially provides biodiverse options for specific biotransformations unique to these microorganisms. The list of extreme thermophiles growing optimally between 70 and 100°C with genetic toolkits currently available includes archaea and bacteria, aerobes and anaerobes, coming from genera such as Caldicellulosiruptor, Sulfolobus, Thermotoga, Thermococcus, and Pyrococcus. These organisms exhibit unusual and potentially useful native metabolic capabilities, including cellulose degradation, metal solubilization, and RuBisCO-free carbon fixation. Those looking to design a thermal bioprocess now have a host of potential candidates to choose from, each with its own advantages and challenges that will influence its appropriateness for specific applications. Here, the issues and opportunities for extremely thermophilic metabolic engineering platforms are considered with an eye toward potential technological advantages for high temperature industrial biotechnology.

7.
Appl Environ Microbiol ; 81(20): 7187-200, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26253677

ABSTRACT

n-Butanol is generated as a natural product of metabolism by several microorganisms, but almost all grow at mesophilic temperatures. A synthetic pathway for n-butanol production from acetyl coenzyme A (acetyl-CoA) that functioned at 70°C was assembled in vitro from enzymes recruited from thermophilic bacteria to inform efforts for engineering butanol production into thermophilic hosts. Recombinant versions of eight thermophilic enzymes (ß-ketothiolase [Thl], 3-hydroxybutyryl-CoA dehydrogenase [Hbd], and 3-hydroxybutyryl-CoA dehydratase [Crt] from Caldanaerobacter subterraneus subsp. tengcongensis; trans-2-enoyl-CoA reductase [Ter] from Spirochaeta thermophila; bifunctional acetaldehyde dehydrogenase/alcohol dehydrogenase [AdhE] from Clostridium thermocellum; and AdhE, aldehyde dehydrogenase [Bad], and butanol dehydrogenase [Bdh] from Thermoanaerobacter sp. strain X514) were utilized to examine three possible pathways for n-butanol. These pathways differed in the two steps required to convert butyryl-CoA to n-butanol: Thl-Hbd-Crt-Ter-AdhE (C. thermocellum), Thl-Hbd-Crt-Ter-AdhE (Thermoanaerobacter X514), and Thl-Hbd-Crt-Ter-Bad-Bdh. n-Butanol was produced at 70°C, but with different amounts of ethanol as a coproduct, because of the broad substrate specificities of AdhE, Bad, and Bdh. A reaction kinetics model, validated via comparison to in vitro experiments, was used to determine relative enzyme ratios needed to maximize n-butanol production. By using large relative amounts of Thl and Hbd and small amounts of Bad and Bdh, >70% conversion to n-butanol was observed in vitro, but with a 60% decrease in the predicted pathway flux. With more-selective hypothetical versions of Bad and Bdh, >70% conversion to n-butanol is predicted, with a 19% increase in pathway flux. Thus, more-selective thermophilic versions of Bad, Bdh, and AdhE are needed to fully exploit biocatalytic n-butanol production at elevated temperatures.


Subject(s)
1-Butanol/metabolism , Acetyl-CoA C-Acyltransferase/metabolism , Acyl Coenzyme A/metabolism , Alcohol Dehydrogenase/metabolism , Alcohol Oxidoreductases/metabolism , Aldehyde Oxidoreductases/metabolism , Biocatalysis , Chromatography, Gas , Clostridium acetobutylicum/metabolism , Clostridium thermocellum/metabolism , Thermoanaerobacter/metabolism
8.
Biotechnol Bioeng ; 112(8): 1533-43, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25753826

ABSTRACT

Metabolically engineered strains of the hyperthermophile Pyrococcus furiosus (T(opt) 95-100°C), designed to produce 3-hydroxypropionate (3HP) from maltose and CO2 using enzymes from the Metallosphaera sedula (T(opt) 73°C) carbon fixation cycle, were examined with respect to the impact of heterologous gene expression on metabolic activity, fitness at optimal and sub-optimal temperatures, gas-liquid mass transfer in gas-intensive bioreactors, and potential bottlenecks arising from product formation. Transcriptomic comparisons of wild-type P. furiosus, a genetically-tractable, naturally-competent mutant (COM1), and COM1-based strains engineered for 3HP production revealed numerous differences after being shifted from 95°C to 72°C, where product formation catalyzed by the heterologously-produced M. sedula enzymes occurred. At 72°C, significantly higher levels of metabolic activity and a stress response were evident in 3HP-forming strains compared to the non-producing parent strain (COM1). Gas-liquid mass transfer limitations were apparent, given that 3HP titers and volumetric productivity in stirred bioreactors could be increased over 10-fold by increased agitation and higher CO2 sparging rates, from 18 mg/L to 276 mg/L and from 0.7 mg/L/h to 11 mg/L/h, respectively. 3HP formation triggered transcription of genes for protein stabilization and turnover, RNA degradation, and reactive oxygen species detoxification. The results here support the prospects of using thermally diverse sources of pathways and enzymes in metabolically engineered strains designed for product formation at sub-optimal growth temperatures.


Subject(s)
Carbon Dioxide/metabolism , Lactic Acid/analogs & derivatives , Metabolic Engineering/methods , Metabolic Networks and Pathways/genetics , Pyrococcus furiosus/genetics , Pyrococcus furiosus/metabolism , Bioreactors/microbiology , Gene Expression Profiling , Hot Temperature , Lactic Acid/metabolism , Maltose/metabolism , Pyrococcus furiosus/radiation effects , Sulfolobaceae/genetics
9.
Extremophiles ; 19(2): 269-81, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25472011

ABSTRACT

A mutant ('lab strain') of the hyperthermophilic archaeon Pyrococcus furiosus DSM3638 exhibited an extended exponential phase and atypical cell aggregation behavior. Genomic DNA from the mutant culture was sequenced and compared to wild-type (WT) DSM3638, revealing 145 genes with one or more insertions, deletions, or substitutions (12 silent, 33 amino acid substitutions, and 100 frame shifts). Approximately, half of the mutated genes were transposases or hypothetical proteins. The WT transcriptome revealed numerous changes in amino acid and pyrimidine biosynthesis pathways coincidental with growth phase transitions, unlike the mutant whose transcriptome reflected the observed prolonged exponential phase. Targeted gene deletions, based on frame-shifted ORFs in the mutant genome, in a genetically tractable strain of P. furiosus (COM1) could not generate the extended exponential phase behavior observed for the mutant. For example, a putative radical SAM family protein (PF2064) was the most highly up-regulated ORF (>25-fold) in the WT between exponential and stationary phase, although this ORF was unresponsive in the mutant; deletion of this gene in P. furiosus COM1 resulted in no apparent phenotype. On the other hand, frame-shifting mutations in the mutant genome negatively impacted transcription of a flagellar biosynthesis operon (PF0329-PF0338).Consequently, cells in the mutant culture lacked flagella and, unlike the WT, showed minimal evidence of exopolysaccharide-based cell aggregation in post-exponential phase. Electron microscopy of PF0331-PF0337 deletions in P. furiosus COM1 showed that absence of flagella impacted normal cell aggregation behavior and, furthermore, indicated that flagella play a key role, beyond motility, in the growth physiology of P. furiosus.


Subject(s)
Flagella/genetics , Genes, Bacterial , Mutation , Pyrococcus furiosus/genetics , Cell Proliferation , Flagella/ultrastructure , Phenotype , Pyrococcus furiosus/growth & development , Pyrococcus furiosus/metabolism , Pyrococcus furiosus/physiology , Transcriptome
10.
Metab Eng ; 27: 101-106, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25461832

ABSTRACT

Biologically produced alcohols are of great current interest for renewable solvents and liquid transportation fuels. While bioethanol is now produced on a massive scale, butanol has superior fuel characteristics and an additional value as a solvent and chemical feedstock. Butanol production has been demonstrated at ambient temperatures in metabolically-engineered mesophilic organisms, but the ability to engineer a microbe for in vivo high-temperature production of commodity chemicals has several distinct advantages. These include reduced contamination risk, facilitated removal of volatile products, and a wide temperature range to modulate and balance both the engineered pathway and the host׳s metabolism. We describe a synthetic metabolic pathway assembled from genes obtained from three different sources for conversion of acetyl-CoA to 1-butanol, and 1-butanol generation from glucose was demonstrated near 70°C in a microorganism that grows optimally near 100°C. The module could also be used in thermophiles capable of degrading plant biomass.


Subject(s)
1-Butanol/metabolism , Metabolic Engineering/methods , Thermoanaerobacterium , Acetyl Coenzyme A/genetics , Acetyl Coenzyme A/metabolism , Thermoanaerobacterium/genetics , Thermoanaerobacterium/metabolism
11.
J Pediatr Orthop ; 27(3): 338-46, 2007.
Article in English | MEDLINE | ID: mdl-17414022

ABSTRACT

BACKGROUND: Angular measurements are commonly used in orthopaedic surgery. No study has addressed measurement variability due to the measurement device itself. It was the purpose of this study to assess measurement variability of articulated versus fixed devices. METHODS: Three articulated and 4 fixed goniometers were randomly selected. Thirty-two different angles, ranging from a few degrees to nearly 180 degrees, were drawn with a standard soft-lead marking pencil. The angles were measured by 5 different observers with 7 different goniometers on 2 separate occasions separated by a minimum of 3 weeks. We wished to determine whether the variability of any goniometer was within a +/-1-degree range. RESULTS: There were 1023 (91.3%) absolute differences of 1 degree or less and 97 (8.7%) of more than 1 degree. Intraobserver agreement was 92.0%; 96.9% for fixed and 84.0% for hinged goniometers. Interobserver agreement was of 90.7%; 96.2% for the fixed and 83.4% for the hinged goniometers. Intragoniometer agreement was 91.3%; 96.9% for fixed and 84.0% for hinged goniometers. Intergoniometer agreement was 87.0% with fixed goniometers demonstrating better agreement than hinged goniometers. The overall intraobserver and interobserver measurement variability was +/-2.33 and +/-2.26 degrees, respectively; the overall intragoniometer and intergoniometer measurement variability was +/-2.26 and +/-2.30 degrees, respectively. For fixed goniometers, the intergoniometer measurement variability is +/-2.0 degrees, for hinged goniometers, +/-2.9 degrees, and when using both fixed and hinged goniometers, +/-2.4 degrees. Thus, the fixed goniometers are the ideal type with overall better agreement and measurement variability. CONCLUSION: Any one orthopaedic surgeon should use the same goniometer at all times, preferably a fixed type, so that measurement variability can be reduced by +/-2.0 degrees. If a physician uses a particular published measurement variability from the literature in which different goniometers were used, then the intraobserver measurement variability will be less than the published value by approximately +/-2 degrees. This is important when faced with the question of a change in an angular measurement being a true change or simply a reflection of measurement error.


Subject(s)
Anthropometry/instrumentation , Orthopedics/methods , Chi-Square Distribution , Equipment Design , Humans , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...