Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Metabolomics ; 20(3): 53, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722395

ABSTRACT

INTRODUCTION: Despite the well-recognized health benefits, the mechanisms and site of action of metformin remains elusive. Metformin-induced global lipidomic changes in plasma of animal models and human subjects have been reported. However, there is a lack of systemic evaluation of metformin-induced lipidomic changes in different tissues. Metformin uptake requires active transporters such as organic cation transporters (OCTs), and hence, it is anticipated that metformin actions are tissue-dependent. In this study, we aim to characterize metformin effects in non-diabetic male mice with a special focus on lipidomics analysis. The findings from this study will help us to better understand the cell-autonomous (direct actions in target cells) or non-cell-autonomous (indirect actions in target cells) mechanisms of metformin and provide insights into the development of more potent yet safe drugs targeting a particular organ instead of systemic metabolism for metabolic regulations without major side effects. OBJECTIVES: To characterize metformin-induced lipidomic alterations in different tissues of non-diabetic male mice and further identify lipids affected by metformin through cell-autonomous or systemic mechanisms based on the correlation between lipid alterations in tissues and the corresponding in-tissue metformin concentrations. METHODS: A dual extraction method involving 80% methanol followed by MTBE (methyl tert-butyl ether) extraction enables the analysis of free fatty acids, polar metabolites, and lipids. Extracts from tissues and plasma of male mice treated with or without metformin in drinking water for 12 days were analyzed using HILIC chromatography coupled to Q Exactive Plus mass spectrometer or reversed-phase liquid chromatography coupled to MS/MS scan workflow (hybrid mode) on LC-Orbitrap Exploris 480 mass spectrometer using biologically relevant lipids-containing inclusion list for data-independent acquisition (DIA), named as BRI-DIA workflow followed by data-dependent acquisition (DDA), to maximum the coverage of lipids and minimize the negative effect of stochasticity of precursor selection on experimental consistency and reproducibility. RESULTS: Lipidomics analysis of 6 mouse tissues and plasma allowed a systemic evaluation of lipidomic changes induced by metformin in different tissues. We observed that (1) the degrees of lipidomic changes induced by metformin treatment overly correlated with tissue concentrations of metformin; (2) the impact on lysophosphatidylcholine (lysoPC) and cardiolipins was positively correlated with tissue concentrations of metformin, while neutral lipids such as triglycerides did not correlate with the corresponding tissue metformin concentrations; (3) increase of intestinal tricarboxylic acid (TCA) cycle intermediates after metformin treatment. CONCLUSION: The data collected in this study from non-diabetic mice with 12-day metformin treatment suggest that the overall metabolic effect of metformin is positively correlated with tissue concentrations and the effect on individual lipid subclass is via both cell-autonomous mechanisms (cardiolipins and lysoPC) and non-cell-autonomous mechanisms (triglycerides).


Subject(s)
Lipid Metabolism , Lipidomics , Metformin , Metformin/pharmacology , Metformin/metabolism , Animals , Mice , Male , Lipidomics/methods , Lipid Metabolism/drug effects , Lipids/blood , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/metabolism , Mice, Inbred C57BL , Tandem Mass Spectrometry/methods
2.
Sci Rep ; 14(1): 4020, 2024 02 18.
Article in English | MEDLINE | ID: mdl-38369593

ABSTRACT

Over-consumption of fructose in adults and children has been linked to increased risk of non-alcoholic fatty liver disease (NAFLD). Recent studies have highlighted the effect of fructose on liver inflammation, fibrosis, and immune cell activation. However, little work summarizes the direct impact of fructose on macrophage infiltration, phenotype, and function within the liver. We demonstrate that chronic fructose diet decreased Kupffer cell populations while increasing transitioning monocytes. In addition, fructose increased fibrotic gene expression of collagen 1 alpha 1 (Col1a1) and tissue metallopeptidase inhibitor 1 (Timp1) as well as inflammatory gene expression of tumor necrosis factor alpha (Tnfa) and expression of transmembrane glycoprotein NMB (Gpnmb) in liver tissue compared to glucose and control diets. Single cell RNA sequencing (scRNAseq) revealed fructose elevated expression of matrix metallopeptidase 12 (Mmp12), interleukin 1 receptor antagonist (Il1rn), and radical S-adenosyl methionine domain (Rsad2) in liver and hepatic macrophages. In vitro studies using IMKC and J774.1 cells demonstrated decreased viability when exposed to fructose. Additionally, fructose increased Gpnmb, Tnfa, Mmp12, Il1rn, and Rsad2 in unpolarized IMKC. By mass spectrometry, C13 fructose tracing detected fructose metabolites in glycolysis and the pentose phosphate pathway (PPP). Inhibition of the PPP further increased fructose induced Il6, Gpnmb, Mmp12, Il1rn, and Rsad2 in nonpolarized IMKC. Taken together, fructose decreases cell viability while upregulating resolution and anti-inflammatory associated genes in Kupffer cells.


Subject(s)
Kupffer Cells , Non-alcoholic Fatty Liver Disease , Child , Humans , Kupffer Cells/metabolism , Fructose/metabolism , Pentose Phosphate Pathway , Matrix Metalloproteinase 12/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Fibrosis , Phenotype
3.
Res Sq ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36711728

ABSTRACT

Introduction: Despite the well-recognized health benefits, the mechanisms and site of action of metformin remains elusive. Metformin-induced global lipidomic changes in plasma of animal models and human subjects have been reported. However, there is a lack of systemic evaluation of metformin-induced lipidomic changes in different tissues. Metformin uptake requires active transporters such as organic cation transporters (OCTs), and hence, it is anticipated that metformin actions are tissue-dependent. In this study, we aim to characterize metformin effects in non-diabetic male mice with a special focus on lipidomics analysis. The findings from this study will help us to better understand the cell-autonomous (direct actions in target cells) or non-cell-autonomous (indirect actions in target cells) mechanisms of metformin and provide insights into the development of more potent yet safe drugs targeting a particular organ instead of systemic metabolism for metabolic regulations without major side effects. Objectives: To characterize metformin-induced lipidomic alterations in different tissues of non-diabetic male mice and further identify lipids affected by metformin through cell-autonomous or systemic mechanisms based on the correlation between lipid alterations in tissues and the corresponding in-tissue metformin concentrations. Methods: Lipids were extracted from tissues and plasma of male mice treated with or without metformin in drinking water for 12 days and analyzed using MS/MS scan workflow (hybrid mode) on LC-Orbitrap Exploris 480 mass spectrometer using biologically relevant lipids-containing inclusion list for data-independent acquisition (DIA), named as BRI-DIA workflow followed by data-dependent acquisition (DDA), to maximum the coverage of lipids and minimize the negative effect of stochasticity of precursor selection on experimental consistency and reproducibility. Results: Lipidomics analysis of 6 mouse tissues and plasma using MS/MS combining BRI-DIA and DDA allowed a systemic evaluation of lipidomic changes induced by metformin in different tissues. We observed that 1) the degrees of lipidomic changes induced by metformin treatment overly correlated with tissue concentrations of metformin; 2) the impact on lysophosphorylcholine and cardiolipins was positively correlated with tissue concentrations of metformin, while neutral lipids such as triglycerides did not correlate with the corresponding tissue metformin concentrations. Conclusion: The data collected in this study from non-diabetic mice with 12-day metformin treatment suggest that the overall metabolic effect of metformin is positively correlated with tissue concentrations and the effect on individual lipid subclass is via both cell-autonomous mechanisms (cardiolipins and lysoPC) and non-cell-autonomous mechanisms (triglycerides).

4.
Front Immunol ; 14: 1302006, 2023.
Article in English | MEDLINE | ID: mdl-38274832

ABSTRACT

Background & aims: Activated CD8+ T cells are elevated in Nonalcoholic steatohepatitis (NASH) and are important for driving fibrosis and inflammation. Despite this, mechanisms of CD8+ T cell activation in NASH are largely limited. Specific CD8+ T cell subsets may become activated through metabolic signals or cytokines. However, studies in NASH have not evaluated the impact of antigen presentation or the involvement of specific antigens. Therefore, we determined if activated CD8+ T cells are dependent on MHC class I expression in NASH to regulate fibrosis and inflammation. Methods: We used H2Kb and H2Db deficient (MHC I KO), Kb transgenic mice, and myeloid cell Kb deficient mice (LysM Kb KO) to investigate how MHC class I impacts CD8+ T cell function and NASH. Flow cytometry, gene expression, and histology were used to examine hepatic inflammation and fibrosis. The hepatic class I immunopeptidome was evaluated by mass spectrometry. Results: In NASH, MHC class I isoform H2Kb was upregulated in myeloid cells. MHC I KO demonstrated protective effects against NASH-induced inflammation and fibrosis. Kb mice exhibited increased fibrosis in the absence of H2Db while LysM Kb KO mice showed protection against fibrosis but not inflammation. H2Kb restricted peptides identified a unique NASH peptide Ncf2 capable of CD8+ T cell activation in vitro. The Ncf2 peptide was not detected during fibrosis resolution. Conclusion: These results suggest that activated hepatic CD8+ T cells are dependent on myeloid cell MHC class I expression in diet induced NASH to promote inflammation and fibrosis. Additionally, our studies suggest a role of NADPH oxidase in the production of Ncf2 peptide generation.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Non-alcoholic Fatty Liver Disease/pathology , CD8-Positive T-Lymphocytes , Inflammation , Myeloid Cells/metabolism , Mice, Transgenic , Fibrosis , Cytokines/metabolism
5.
Metabolomics ; 18(8): 55, 2022 07 16.
Article in English | MEDLINE | ID: mdl-35842862

ABSTRACT

INTRODUCTION: Data-dependent acquisition (DDA) is the most commonly used MS/MS scan method for lipidomics analysis on orbitrap-based instrument. However, MS instrument associated software decide the top N precursors for fragmentation, resulting in stochasticity of precursor selection and compromised consistency and reproducibility. We introduce a novel workflow using biologically relevant lipids to construct inclusion list for data-independent acquisition (DIA), named as BRI-DIA workflow. OBJECTIVES: To ensure consistent coverage of biologically relevant lipids in LC-MS/MS-based lipidomics analysis. METHODS: Biologically relevant ion list was constructed based on LIPID MAPS and lipidome atlas in MS-DIAL 4. Lipids were extracted from mouse tissues and used to assess different MS/MS scan workflow (DDA, BRI-DIA, and hybrid mode) on LC-Orbitrap Exploris 480 mass spectrometer. RESULTS: DDA resulted in more MS/MS events, but the total number of unique lipids identified by three methods (DDA, BRI-DIA, and hybrid MS/MS scan mode) is comparable (580 unique lipids across 44 lipid subclasses in mouse liver). Major cardiolipin molecular species were identified by data generated using BRI-DIA and hybrid methods and allowed calculation of cardiolipin compositions, while identification of the most abundant cardiolipin CL72:8 was missing in data generated using DDA method, leading to wrong calculation of cardiolipin composition. CONCLUSION: The method of using inclusion list comprised of biologically relevant lipids in DIA MS/MS scan is as efficient as traditional DDA method in profiling lipids, but offers better consistency of lipid identification, compared to DDA method. This study was performed using Orbitrap Exploris 480, and we will further evaluate this workflow on other platforms, and if verified by future work, this biologically relevant ion fragmentation workflow could be routinely used in many studies to improve MS/MS identification capacities.


Subject(s)
Lipidomics , Tandem Mass Spectrometry , Animals , Cardiolipins , Chromatography, Liquid/methods , Ions , Metabolomics , Mice , Reproducibility of Results , Tandem Mass Spectrometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...