Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Antonie Van Leeuwenhoek ; 117(1): 88, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850314

ABSTRACT

Two alkaliphilic, Gram-stain-negative bacterial strains (MEB004T and MEB108T) were isolated from water samples collected from Lonar lake, India. The phylogenetic analysis of their 16S rRNA gene sequences showed the highest similarity to A. delamerensis DSM 18314T (98.4%), followed by A. amylolytica DSM 18337T and A. collagenimarina JCM 14267T (97.9%). The genome sizes of strains MEB004T and MEB108T were determined to be 3,858,702 and 4,029,814 bp, respectively, with genomic DNA G + C contents of 51.4 and 51.9%. Average Nucleotide Identity, DNA-DNA Hybridization and Amino Acid Identity values between strains (MEB004T and MEB108T) and A. amylolytica DSM 18337T were (82.3 and 85.5), (25.0 and 29.2) and (86.7 and 90.2%). Both novel strains produced industrially important enzymes, such as amylase, lipase, cellulase, caseinase, and chitinase at pH 10 evidenced by the genomic presence of carbohydrate-active enzymes encoding genes. Genomic analyses further identified pH tolerance genes, affirming their adaptation to alkaline Lonar Lake. Dominant fatty acids were Summed feature 8 (C18:1 ω7c and/or C18:1 ω6c), C16:0, Summed feature 3, Sum In Feature 2 and C12:0 3OH. The prevalent polar lipids included phosphatidyl ethanolamine, phosphatidyl glycerol, and diphosphatidyl glycerol. The major respiratory quinone was ubiquinone-8. Based on the polyphasic data, we propose the classification of strains MEB004T and MEB108T as novel species within the genus Alkalimonas assigning the names Alkalimonas mucilaginosa sp. nov. and Alkalimonas cellulosilytica sp. nov., respectively. The type strains are MEB004T (= MCC 5208T = JCM 35954T = NCIMB 15460T) and MEB108T (= MCC 5330T = JCM 35955T = NCIMB 15461T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Lakes , Phylogeny , RNA, Ribosomal, 16S , Lakes/microbiology , India , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Fatty Acids/analysis , Genome, Bacterial , Water Microbiology , Hydrogen-Ion Concentration , Sequence Analysis, DNA , Nucleic Acid Hybridization
2.
Antonie Van Leeuwenhoek ; 116(11): 1103-1112, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37615744

ABSTRACT

A novel chitin degrading alkaliphilic bacterial strain (MEB 203 T) was isolated from sediment collected from Lonar lake, India. The strain exhibited its maximum growth at a temperature of 37 °C, with an optimal pH of 10 and a NaCl concentration of 2%. 16S rRNA gene based phylogenetic tree showed that strain was closely related to Alkalihalobacterium elongatum MCC 2982 T (98.64% similarity) followed by A. alkalinitrilicum DSM 22532 T (97.84% similarity). The genome size was 4.9 Mb with DNA G + C content of 37.7%. The dDDH value between strain MEB 203 T and A. elongatum MCC 2982 T was 26.4 ± 2.4% while OrthoANI value was 82.1%. Genome analysis revealed the presence of genes responsible for L-ectoine and cation/proton antiporter which may facilitate growth of strain in alkaline-saline habitat of Lonar lake. Strain MEB 203 T was able to utilize complex sugars such as chitin, cellulose, and starch as a carbon source at alkaline conditions which was also corroborated from the genomic presence of carbohydrate active enzymes (CAZymes). It was also able to produce biotechnologically important enzymes such as lipases and proteases which were stable at pH (9-10). The bacterium is majorly composed of C15:0 iso, C16:0 iso, and C17:0 iso (> 10%) fatty acids while diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, and unidentified phospholipid (PL3) were identified as the predominant polar lipids. Based on differential physiological, biochemical, and genomic features of strain MEB 203 T, a novel species Alkalihalobacterium chitinilyticum sp. nov. (Type strain MEB 203 T = MCC 3920 T = NCIMB 15407 T = JCM 35078 T) is proposed.

3.
3 Biotech ; 13(7): 258, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37405269

ABSTRACT

In the present study, 51 fungal endophytes (FEs) were isolated, purified and identified from the healthy leaf segments of ten grapevine varieties based on the spore and colony morphologies and ITS sequence information. The FEs belonged to the Ascomycota division comprising eight genera viz., Alternaria, Aspergillus, Bipolaris, Curvularia, Daldinia, Exserohilum, Fusarium and Nigrospora. The in vitro direct confrontation assay against Colletotrichum gloeosporioides revealed that six isolates viz., VR8 (70%), SB2 (83.15%), CS2 (88.42%), MN3 (88.42%), MS5 (78.94%) and MS15 (78.94%) inhibited the mycelial growth of test pathogen. The remaining 45 fungal isolates showed 20-59.9% growth inhibition of C. gloeosporioides. Indirect confrontation assay manifested that the isolates MN1 and MN4a showed 79.09% and 78.18% growth inhibition of C. gloeosporioides followed by MM4 (73.63%) and S5 (71.81%) isolates. Isolate S5 and MM4 were found to produce azulene and 1,3-Cyclopentanedione, 4,4-dimethyl as antimicrobial volatile organic compounds, respectively. The 38 FEs showed PCR amplification using internal transcribed spacer universal primers. The BLAST search revealed highest similarity with the existing sequences in the database. The phylogenetic analysis revealed the occurrence of seven distinct clusters each corresponding to single genus. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03675-z.

4.
Microbiol Spectr ; 11(3): e0502822, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37071006

ABSTRACT

Xylan is the most abundant hemicellulose in hardwood and graminaceous plants. It is a heteropolysaccharide comprising different moieties appended to the xylose units. Complete degradation of xylan requires an arsenal of xylanolytic enzymes that can remove the substitutions and mediate internal hydrolysis of the xylan backbone. Here, we describe the xylan degradation potential and underlying enzyme machinery of the strain, Paenibacillus sp. LS1. The strain LS1 was able to utilize both beechwood and corncob xylan as the sole source of carbon, with the former being the preferred substrate. Genome analysis revealed an extensive xylan-active CAZyme repertoire capable of mediating efficient degradation of the complex polymer. In addition to this, a putative xylooligosaccharide ABC transporter and homologues of the enzymes involved in the xylose isomerase pathway were identified. Further, we have validated the expression of selected xylan-active CAZymes, transporters, and metabolic enzymes during growth of the LS1 on xylan substrates using qRT-PCR. The genome comparison and genomic index (average nucleotide identity [ANI] and digital DNA-DNA hybridization) values revealed that strain LS1 is a novel species of the genus Paenibacillus. Lastly, comparative genome analysis of 238 genomes revealed the prevalence of xylan-active CAZymes over cellulose across the Paenibacillus genus. Taken together, our results indicate that Paenibacillus sp. LS1 is an efficient degrader of xylan polymers, with potential implications in the production of biofuels and other beneficial by-products from lignocellulosic biomass. IMPORTANCE Xylan is the most abundant hemicellulose in the lignocellulosic (plant) biomass that requires cooperative deconstruction by an arsenal of different xylanolytic enzymes to produce xylose and xylooligosaccharides. Microbial (particularly, bacterial) candidates that encode such enzymes are an asset to the biorefineries to mediate efficient and eco-friendly deconstruction of xylan to generate products of value. Although xylan degradation by a few Paenibacillus spp. is reported, a complete genus-wide understanding of the said trait is unavailable till date. Through comparative genome analysis, we showed the prevalence of xylan-active CAZymes across Paenibacillus spp., therefore making them an attractive option towards efficient xylan degradation. Additionally, we deciphered the xylan degradation potential of the strain Paenibacillus sp. LS1 through genome analysis, expression profiling, and biochemical studies. The ability of Paenibacillus sp. LS1 to degrade different xylan types obtained from different plant species, emphasizes its potential implication in lignocellulosic biorefineries.


Subject(s)
Cellulose , Paenibacillus , Xylans/metabolism , Paenibacillus/genetics , Xylose/metabolism , DNA
6.
Antonie Van Leeuwenhoek ; 116(5): 435-445, 2023 May.
Article in English | MEDLINE | ID: mdl-36811745

ABSTRACT

An alkaliphilic, Gram-stain-positive, non-motile, rod-shaped, and spore forming bacterial strain (MEB205T) was isolated from sediment sample collected from Lonar lake, India. The strain grew optimally at pH 10, NaCl concentration of 3.0% at 37 °C. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain MEB205T belonged to the genus Halalkalibacter in the family Bacillaceae and shared the highest sequence similarity with H. okhensis Kh10-101T (98.9%) followed by H. wakoensis N-1 T (98.7%). The assembled genome of strain MEB205T has a total length of 4.8 Mb with a G + C content of 37.8%. The dDDH and OrthoANI values between strain MEB205T and H. okhensis Kh10-101 T were 29.1% and 84.3%, respectively. Furthermore, the genome analysis revealed the presence of antiporter genes (nhaA and nhaD) and L-ectoine biosynthesis gene required for survival of the strain MEB205T in alkaline-saline habitat. The major fatty acid was C15:0 anteiso, C16:0 and C15:0 iso (> 10.0%). Diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine were the major polar lipids. meso-diaminopimelic acid was diagnostic diamino acid for cell wall peptidoglycan. Based on the polyphasic taxonomic studies, strain MEB205T represent a novel species of the genus Halalkalibacter for which the name Halalkalibacter alkaliphilus sp. nov. (Type strain MEB205T = MCC 3863 T = JCM 34004 T = NCIMB 15406 T) is proposed.


Subject(s)
Lakes , Phospholipids , Phospholipids/analysis , Lakes/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Nucleic Acid Hybridization , Fatty Acids/analysis , Genomics , DNA, Bacterial/genetics , Bacterial Typing Techniques
7.
Curr Microbiol ; 80(4): 108, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36807001

ABSTRACT

The Western Ghats is one of India's mega-diversity hotspots and an ecologically and geologically important area for the diversity of endemic plants and animals. The present study provides insights into the aerobic bacterial diversity and composition of the soils of North Western Ghats located in Maharashtra state (NWGM), India. The samples for the culture-dependent study were collected from 6 different locations namely Malshej Ghat, Bhimashankar, Lonavala, Mulshi, Tail-Baila, and Mahabaleshwar. A total of 173 isolates were obtained from the different samples, which belonged to Proteobacteria (43%), Firmicutes (36%), and Actinobacteria (19%). Sequences of 15 strains shared ≤ 98.7% similarity (a species cut-off) which represent potential novel species. Metagenomic analysis revealed the presence of Actinobacteria and Proteobacteria as the most dominant phyla at both MB and MG. However, both sites showed variation in the composition of rare phyla and other dominant phyla. This difference in bacterial community composition could be due to differences in altitude or other physicochemical properties. The functional prediction from the amplicon sequencing showed the abundance of carbohydrate, protein, and lipid metabolism which was corroborated by screening the isolated bacterial strains for the same. The present study has a unique take on microbial diversity and defines the importance of community assembly processes such as drift, dispersal, and selection. Such processes are relatively important in controlling community diversity, distribution, as well as succession. This study has shown that the microbial community of NWGM is a rich source of polysaccharide degrading bacteria having biotechnological potential.


Subject(s)
Actinobacteria , Soil , Animals , Soil/chemistry , Soil Microbiology , India , Bacteria/genetics , Biodiversity , Proteobacteria , Actinobacteria/genetics , RNA, Ribosomal, 16S/metabolism
8.
BMC Microbiol ; 22(1): 233, 2022 10 01.
Article in English | MEDLINE | ID: mdl-36183083

ABSTRACT

Compared to the clinical sector, the prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in the food sector is relatively low. However, their presence in seafood is a significant public health concern. In India, fish and fishery products are maximally manually handled compared to other food products. In this study, 498 fish samples were collected under various conditions (fresh, chilled or dressed) and representatives from their surroundings. These samples were screened for the prevalence of Staphylococcus aureus, determining its antimicrobial resistance, MRSA and genetic profile. It is observed that 15.0% and 3.0% of the total samples were screened positive for S. aureus and MRSA, respectively. The S. aureus strain MRSARF-10 showed higher resistance to linezolid, co-trimoxazole, cefoxitin, ofloxacin, gentamicin, rifampicin, ampicillin/sulbactam and Piperacillin-tazobactam. This MRSA, spa type t021 and SCCmec type V strain isolated from dried ribbon fish (Family Trachipteridae) carried virulence factors for exoenzymes such as aureolysin, serine, toxin genes and a novel MLST ST 243, as revealed from its draft-genome sequence. This highly pathogenic, multidrug-resistant and virulent S. aureus novel strain is circulating in the environment with chances of spreading among the seafood workers and the environment. It is further suggested that Good Hygienic Practices recommended by World Health Organization need to be followed during the different stages of seafood processing to provide pathogen-free fish and fishery products to the consumers.


Subject(s)
Anti-Infective Agents , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Ampicillin , Animals , Anti-Bacterial Agents/pharmacology , Cefoxitin , Gentamicins , Linezolid , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , Ofloxacin , Piperacillin , Prevalence , Rifampin , Seafood , Serine , Staphylococcal Infections/epidemiology , Staphylococcus aureus , Sulbactam , Tazobactam , Trimethoprim, Sulfamethoxazole Drug Combination , Virulence Factors/genetics
9.
Arch Microbiol ; 204(8): 516, 2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35869333

ABSTRACT

A gram-stain-negative, endo-spore forming, facultatively anaerobic, motile, rod-shaped bacterial strain SM69T, isolated from soil samples of Rohtak, Haryana, India was characterized using polyphasic approach. White colonies were 2-3 mm, in diameter and growth occurred between 20 and 55 °C, pH 6.0-10.0 with 0-2.0% (w/v) NaCl. Based on 16S rRNA gene sequence similarity the strain is placed in the genus Paenibacillus as it is closely related to 'Paenibacillus tyrfis MSt1T' (99.7%) and P. elgii SD17T (99.6%). The cell wall peptidoglycan contained meso-diaminopimelic acid. The dominant fatty acids included anteiso-C15: 0 (50%), C16: 0 (12%) and anteiso-C17: 0 (10%). Major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. The size of the draft genome was 7,848,017 bp, with 53.1% G+C content. dDDH (51.6%) and ANI (93.5%) of strain SM69T with its close relatives indicates that it represents a novel species, for which the name Paenibacillus oleatilyticus sp. nov. (Type strain SM69T = MCC 3064T = JCM 33981T = KACC 21649T) is proposed.


Subject(s)
Paenibacillus , Soil , Bacterial Typing Techniques , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Fatty Acids/analysis , Nucleic Acid Hybridization , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology
10.
Arch Microbiol ; 204(5): 265, 2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35435503

ABSTRACT

A catalase and oxidase-positive strain BA0156T was isolated from a cyanobacterial mat collected from the farmland mud cultivated with sugarcane from Ahmednagar, India. The 16S rRNA gene of strain BA0156T showed the highest percent sequence similarity with Hydrogenophaga borbori LMG 30805T (98.5%), followed by H. flava DSM 619T (98.3%) and H. intermedia DSM 5680T (98.2%). The strain BA0156T contained the major fatty acids, C16:0 (25.1%) and C17:0 cyclo (3.9%), whereas phosphatidylethanolamine and diphosphatidylglycerol were the major polar lipids. The OrthoANI and dDDH values between strain BA0156T and its closest relative H. borbori LMG 30805T were 84.6% and 28.3%, respectively. The DNA G+C content of strain BA0156T was 69.4 mol %. Furthermore, the biochemical and physiological features of strain BA0156T showed a distinct pattern from their closest phylogenetic neighbours. The phenotypic, genotypic and chemotaxonomic characteristics indicated that the strain BA0156T represents a new species for which the name Hydrogenophaga crocea (type strain BA0156T = MCC 3062T = KCTC 72452T = JCM 34507T) is proposed.


Subject(s)
Comamonadaceae , Cyanobacteria , Bacterial Typing Techniques , Cyanobacteria/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Farms , Fatty Acids/analysis , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
12.
Arch Microbiol ; 204(2): 127, 2022 Jan 08.
Article in English | MEDLINE | ID: mdl-34997867

ABSTRACT

Two aerobic, Gram-stain variable, catalase-positive and oxidase-negative rods named strain UniB2T and UniB3T, were isolated from digestive syrup containing fungal diastase (10 mg/ml), pepsin (2 mg/ml) and sugar base containing polyethylene glycol. Based on 16S rRNA gene sequence analysis, strain UniB2T has the highest sequence similarity with Paenibacillus humicus NBRC 102415T (98.3%) and strain UniB3T showed the highest sequence similarity with Niallia circulans DSM 11T (98.9%). The DNA G + C content of UniB2T was 63.7 mol %. The dDDH and ANI values between the strain UniB2T and its phylogenetically close relative were < 38.3% and < 89.5%, respectively. The major fatty acids of the strain UniB2T were C16:0 (13.9%), C15:0 anteiso (39.7%), C17:0 anteiso (15.5%). The DNA G + C content of UniB3T was 35.6 mol %. The dDDH and ANI values between the strain UniB3T and its close relatives were < 29.1% and 84.6%, respectively. The major fatty acids of strain UniB3T were C16:0 (13.5%), C15:0 anteiso (40.1%) and C17:0 anteiso (16.0%). Major polar lipids for both strains were Diphosphatidylglycerol and phosphatidylethanolamine. Both strains showed unique carbon utilization and assimilation pattern that differentiated them from their phylogenetically related neighbours. These phenotypic, genotypic and chemotaxonomic characters indicated the strains UniB2T and UniB3T represent two novel species for which the names Paenibacillus albicereus sp. nov. (Type strain UniB2T = MCC 3997T = KCTC 43095T = JCM34513T) and Niallia alba sp. nov. (Type strain UniB3T = MCC 3998T = KCTC 43235T = JCM 34492T) are proposed.


Subject(s)
Paenibacillus , Bacterial Typing Techniques , DNA, Bacterial/genetics , Fatty Acids/analysis , Paenibacillus/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2
13.
Curr Microbiol ; 79(2): 51, 2022 Jan 04.
Article in English | MEDLINE | ID: mdl-34982242

ABSTRACT

A halophilic archaeon, designated strain LS1_42T, was isolated from Sambhar Salt Lake, Rajasthan, India. Cells were non-motile, coccoid, Gram-stain-variable and present in irregular clusters with light pink pigmented colonies. The strain was strictly aerobic and able to grow without Mg2+. Growth of the strain LS1_42T was observed at 25-45 °C, pH 7.0-11.0 and NaCl concentrations of 10-35% (w/v). The nearest phylogenetic neighbor of strain LS1_42T was Natronococcus amylolyticus Ah-36T based on 16S rRNA and rpoB' genes with similarity of 95.4% and 91.9%, respectively. Phylogenetic analysis based on 16S rRNA gene, rpoB' gene and whole-genome sequences indicate that the strain LS1_42T belongs to the genus Natronococcus and is closely related to N. amylolyticus. The genome size was 5.38 Mb with 98.9% completeness. The DNA G + C content of the strain LS1_42T was 63.0 mol%. The average nucleotide identity, average amino acid identity and DNA-DNA hybridization values between LS1_42T and N. amylolyticus Ah-36T were 81.3%, 77.7% and 24.8%, respectively. The major polar lipids detected were phosphatidylglycerol and phosphatidylglycerol phosphate methyl ester. On the basis of phenotypic, chemotaxonomic and genome-based analysis, strain LS1_42T represents a novel species within the genus Natronococcus, for which the name Natronococcus pandeyae sp. nov. is proposed. The type strain is LS1_42T (MCC 3654T = JCM 33003T = KCTC 4280T = CGMCC 1.16738T).


Subject(s)
Halobacteriaceae , Natronococcus , DNA, Archaeal/genetics , Halobacteriaceae/genetics , India , Lakes , Nucleic Acid Hybridization , Phospholipids , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
14.
Syst Appl Microbiol ; 44(6): 126272, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34735804

ABSTRACT

The phylum Planctomycetes is metabolically unique group of bacteria divided in two classes Planctomycetia and Phycisphaerae. Anaerobic ammonia-oxidizing (anammox) bacteria are the uncultured representatives of the phylum Planctomycetes. Anammox bacterial genera are placed in the family Candidatus (Ca.) Brocadiaceae of the order Ca. Brocadiales, assigned to the class Planctomycetia. Phylogenetic analysis, showed that the anammox bacteria and Ca. Uabimicrobium form a divergent clade from the rest of the cultured representatives of the phylum Planctomycetes. The phylogenetic study, pairwise distance and Average Amino acid Identity (AAI) showed that anammox bacteria don't belong to the classes Planctomycetia and Phycisphaerae. Anammox bacteria and Ca. Uabimicrobium form a deep-branching third clade in the phylogenetic analysis indicating that it is the most ancient third class within the phylum Planctomycetes. Phenotypic characters also separate anammox bacteria from classes Planctomycetia and Phycisphaerae. Therefore, based on phenotypic, phylogenetic, pairwise distance, AAI and phylogenomic analysis we propose a novel class Ca. Brocadiia to accommodate the order Ca. Brocadiales of anammox bacteria except Ca. Anammoximicrobium. Genera Ca. Jettenia, Ca. Anammoxoglobus, Ca. Kuenenia and Ca. Brocadia show their phylogenetic affiliation to the family Ca. Brocadiaceae. However, Ca. Scalindua showed a distant relationship with the family Ca. Brocadiaceae. Therefore, we suggest the exclusion of the genus Ca. Scalindua from the family Ca. Brocadiaceae; and propose its inclusion under a novel family with a provisional name as Ca. Scalinduaceae fam. nov. Similarly, Ca. Uabimicrobium amporphum showed distinct phylogenetic affiliation, therefore we propose a novel class Ca. Uabimicrobiia classis nov. to accommodate the genus Ca. Uabimicrobium.


Subject(s)
Bacteria , Bacteria/genetics , DNA, Bacterial/genetics , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics
15.
Front Microbiol ; 12: 722369, 2021.
Article in English | MEDLINE | ID: mdl-34707580

ABSTRACT

A Gram-stain positive, long, rod-shaped, motile, and spore-forming bacterium (MEB199T) was isolated from a sediment sample collected from Lonar Lake, India. The strain was oxidase and catalase positive. The strain grew optimally at pH 10, NaCl concentration of 3.5% at 37°C. The major fatty acids were iso-C15:0, iso-C16:0, anteiso-C15:0, and iso-C17:0. The peptidoglycan contained meso-diaminopimelic acid (meso-DAP). Phosphatidylethanolamine, diphosphatidylglycerol, and phosphatidylglycerol were the major polar lipids of MEB199T. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain MEB199T belonged to the family Bacillaceae and exhibited a distinctive position among the members of the genus Alkalihalobacillus (Ahb.). Strain MEB199T shared the highest 16S rRNA gene sequence similarity with Alkalihalobacillus alkalinitrilicus ANL-iso4T (98.36%), whereas with type species Ahb. alcalophilus DSM 485T, it is 94.91%, indicating that strain MEB199T is distinctly related to the genus Alkalihalobacillus. The G + C content of genomic DNA was 36.47 mol%. The digital DNA-DNA hybridization (dDDH) (23.6%) and average nucleotide identity (ANI) (81%) values between strain MEB199T and Ahb. alkalinitrilicus ANL-iso4T confirmed the novelty of this new species. The pairwise identity based on the 16S rRNA gene sequence between the species of genus Alkalihalobacillus ranges from 87.4 to 99.81% indicating the heterogeneity in the genus. The different phylogenetic analysis based on the genome showed that the members of the genus Alkalihalobacillus separated into eight distinct clades. The intra-clade average amino acid identity (AAI) and percentage of conserved proteins (POCP) range from 52 to 68% and 37 to 59%, respectively, which are interspersed on the intra-genera cutoff values; therefore, we reassess the taxonomy of genus Alkalihalobacillus. The phenotypic analysis also corroborated the differentiation between these clades. Based on the phylogenetic analysis, genomic indices, and phenotypic traits, we propose the reclassification of the genus Alkalihalobacillus into seven new genera for which the names Alkalihalobacterium gen. nov., Halalkalibacterium gen. nov., Halalkalibacter gen. nov., Shouchella gen. nov., Pseudalkalibacillus gen. nov., Alkalicoccobacillus gen. nov., and Alkalihalophilus gen. nov. are proposed and provide an emended description of Alkalihalobacillus sensu stricto. Also, we propose the Ahb. okuhidensis as a heterotypic synonym of Alkalihalobacillus halodurans. Based on the polyphasic taxonomic analysis, strain MEB199T represents a novel species of newly proposed genus for which the name Alkalihalobacterium elongatum gen. nov. sp. nov. is proposed. The type strain is MEB199T (= MCC 2982T, = JCM 33704T, = NBRC 114256T, = CGMCC 1.17254T).

16.
Int J Syst Evol Microbiol ; 70(12): 6468-6475, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33174829

ABSTRACT

A novel e-waste-degrading strain, PE08T, was isolated from contaminated soil collected from a paper mill yard in Lalkuan, Uttarakhand, India. Strain PE08T was Gram-stain-negative, rod-shaped, aerobic, oxidase-positive and catalase-positive. Optimum growth was observed at 30 °C (range, 5-40 °C), with 1-2 % NaCl (range, 0-3 %) and at pH 7 (range 6-11). The phylogeny based on 16S rRNA gene sequences delineated strain PE08T to the genus Pseudomonas and showed highest sequence similarity to Pseudomonas furukawaii KF707T (98.70 %), followed by Pseudomonas aeruginosa DSM 50071T (98.62 %) and Pseudomonas resinovorans DSM 21078T (97.93 %). The genome of strain PE08T was sequenced and had one scaffold of 6056953 bp, 99.84 % completeness and 182× coverage were obtained. The G+C content in the genome was 64.24 mol%. The DNA-DNA hybridization and average nucleotide identity values between strain PE08T and its closely related type strain, P. resinovorans DSM 21078T were below 34.8 % and 87.96 %, respectively. The phylogenetic analysis based on whole-genome sequence and concatenated GyrB and RpoB proteins revealed that strain PE08T forms a district clade in the family Pseudomonadaceae. The predominant fatty acids were summed feature 8 (C18 :  1ω7c and/or C18 :1 ω6c), summed feature 3 (C16 :  1ω7c and/or C16 :  1ω6c), C16 : 0 and C12 : 0. The major polar lipids were diphosphatidylglycerol, phosphatidylglycerol and phosphatidylethanolamine. The phenotypic, chemotaxonomic and genetic analysis, including overall genome relatedness index values, indicated that strain PE08T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas lalkuanensis sp. nov. is proposed. The type strain is PE08T (=MCC 3792=KCTC 72454=CCUG 73691).


Subject(s)
Electronic Waste , Phylogeny , Pseudomonas/classification , Soil Microbiology , Soil Pollutants , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Genes, Bacterial , India , Nucleic Acid Hybridization , Phospholipids/chemistry , Pseudomonas/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
17.
18.
Front Microbiol ; 10: 2480, 2019.
Article in English | MEDLINE | ID: mdl-31736915

ABSTRACT

The genus Rhodobacter is taxonomically well studied, and some members are model organisms. However, this genus is comprised of a heterogeneous group of members. 16S rRNA gene-based phylogeny of the genus Rhodobacter indicates a motley assemblage of anoxygenic phototrophic bacteria (genus Rhodobacter) with interspersing members of other genera (chemotrophs) making the genus polyphyletic. Taxogenomics was performed to resolve the taxonomic conflicts of the genus Rhodobacter using twelve type strains. The phylogenomic analysis showed that Rhodobacter spp. can be grouped into four monophyletic clusters with interspersing chemotrophs. Genomic indices (ANI and dDDH) confirmed that all the current species are well defined, except Rhodobacter megalophilus. The average amino acid identity values between the monophyletic clusters of Rhodobacter members, as well as with the chemotrophic genera, are less than 80% whereas the percentage of conserved proteins values were below 70%, which has been observed among several genera related to Rhodobacter. The pan-genome analysis has shown that there are only 1239 core genes shared between the 12 species of the genus Rhodobacter. The polyphasic taxonomic analysis supports the phylogenomic and genomic studies in distinguishing the four Rhodobacter clusters. Each cluster is comprised of one to seven species according to the current Rhodobacter taxonomy. Therefore, to address this taxonomic discrepancy we propose to reclassify the members of the genus Rhodobacter into three new genera, Luteovulum gen. nov., Phaeovulum gen. nov. and Fuscovulum gen. nov., and provide an emended description of the genus Rhodobacter sensu stricto. Also, we propose reclassification of Rhodobacter megalophilus as a sub-species of Rhodobacter sphaeroides.

19.
Microbiol Res ; 218: 108-117, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30454652

ABSTRACT

All three domains of life have an ordered plasma membrane which is pivotal in the selective fitness of primitive life. Like cholesterol in eukaryotes, hopanoids are important in bacteria to modulate membrane order. Hopanoids are pentacyclic triterpenoid lipids biosynthesised in many eubacteria, few ferns and lichens. Hopanoid modulates outer membrane order and hopanoid deficiency results in the weakened structural integrity of the membrane which may in turn affect the other structures within or spanning the cell envelope and contributing to various membrane functions. Hence, to decipher the role of hopanoid, genome-wide transcriptome of wild-type and Δshc mutant of Rhodopseudomonas palustris TIE-1 was studied which indicated 299 genes were upregulated and 306 genes were downregulated in hopanoid deficient mutant, representing ∼11.5% of the genome. Thirty-eight genes involved in chemotaxis, response to stimuli and signal transduction were differentially regulated and impaired motility in hopanoid deficient mutant showed that hopanoid plays a crucial role in chemotaxis. The docking study demonstrated that diguanylate cyclase which catalyses the synthesis of secondary messenger exhibited the capability to interact with hopanoids and might be confederating in chemotaxis and signal transduction. Seventy-four genes involved in membrane transport were differentially expressed and cell assays also explicit that the multidrug transport is compromised in Δshc mutant. Membrane transport is reliant on hopanoids which may explain the basis for previous observations linking hopanoids to antibiotic resistance. Disturbing the membrane order by targeting lipid synthesis can be a possible novel approach in developing new antimicrobials and hopanoid biosynthesis could be a potential target.


Subject(s)
Biological Transport/genetics , Cell Membrane/physiology , Chemotaxis/genetics , Gene Expression Regulation, Bacterial/genetics , Membrane Transport Proteins/genetics , Rhodopseudomonas/genetics , Rhodopseudomonas/metabolism , Triterpenes/metabolism , Escherichia coli Proteins/metabolism , Gene Deletion , Gene Expression Profiling , Membrane Transport Proteins/metabolism , Phosphorus-Oxygen Lyases/metabolism , Signal Transduction/genetics
20.
Arch Microbiol ; 200(10): 1487-1492, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30167725

ABSTRACT

An alkali-tolerant, Gram-stain-negative, motile, rod-to-oval-shaped, yellowish brown-colored, phototrophic bacterium, designated as strain JA916T, was isolated from an alkaline brown pond in Gujarat, India. The DNA G + C content of the strain JA916T was 65.1 mol%. Strain JA916T grew well at pH 10. Respiratory quinone was Q-10 and major fatty acid was C18:1ω7c/C18:1ω6c, with significant quantities of C15:02OH observed. Strain JA916T shared the highest 16S rRNA gene sequence similarity with the type strains of Rhodobacter johrii (98.4%), followed by Rhodobacter megalophilus (98.3%), Rhodobacter sphaeroides (98.3%), Rhodobacter azotoformans (97.9%) and other members of the genus Rhodobacter (< 97%). 16S rRNA gene-based phylogenetic tree shows that strain JA916T formed a distinct sub-clade with Rhodobacter johrii, Rhodobacter megalophilus, Rhodobacter sphaeroides and Rhodobacter azotoformans. Further, rpoB-based phylogenetic analysis showed lower similarity with closely related species (≤ 93.0%) of the genus Rhodobacter, which suggests that JA916T is a novel species of the genus Rhodobacter. DNA-DNA hybridization values between strain JA916T and related type strains were less than 40%. Phenotypic, chemotaxonomical and phylogenetic differences showed that strain JA916T was distinct from other species of the genus Rhodobacter, suggesting strain JA916T represents a new species of the genus for which the name Rhodobacter alkalitolerans sp. nov. is proposed. Type strain is JA916T (= KCTC 15473T = LMG 28749T).


Subject(s)
Ponds/microbiology , Rhodobacter/classification , Base Composition , DNA, Bacterial/chemistry , Fatty Acids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Rhodobacter/chemistry , Rhodobacter/genetics , Rhodobacter/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...