Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microb Drug Resist ; 25(9): 1266-1274, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31216222

ABSTRACT

Aim: The aims of the study are to evaluate the activity of sulbactam, meropenem, and polymyxin B alone and in combination against six isolates of extremely drug resistant Acinetobacter baumannii and to determine dosing regimens that achieve a sufficient joint probability of target attainment (PTA) based on combination antimicrobial pharmacodynamics. Materials and Methods: The combinations were evaluated by the checkerboard method and were considered synergistic when the fractional inhibitory concentration index (FICI) ≤0.5. Pharmacodynamic analyses were carried out by evaluating dosing regimens that achieve ≥90% joint PTA at the percentage of time over a 24-h period wherein the free drug concentration is above the minimum inhibitory concentration (%fT> MIC) of 40% and 60% for meropenem and sulbactam, respectively, and 20 for the ratio of the area under the free drug concentration-time curve over MIC (fAUC/MIC) for polymyxin B. Results: For both polymyxin B-resistant and susceptible isolates, the addition of sulbactam in combination with meropenem and subinhibitory concentration of polymyxin B showed important synergistic activity (five isolates; FICI ≤0.281); the recommended dosing regimens were 2/4 g meropenem/sulbactam q8 hours and 0.5 mg/kg polymyxin B q12 hours. Conclusion: This in vitro study showed that sulbactam can significantly improve the action of meropenem and polymyxin B in OXA-producing A. baumannii isolates, especially when there are no new treatment options available for infections caused by these microorganisms.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/pharmacology , Meropenem/pharmacology , Polymyxin B/pharmacology , Sulbactam/pharmacology , Acinetobacter Infections/drug therapy , Acinetobacter Infections/microbiology , Acinetobacter baumannii/isolation & purification , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Area Under Curve , Dose-Response Relationship, Drug , Drug Combinations , Drug Resistance, Multiple, Bacterial , Drug Synergism , Humans , Meropenem/administration & dosage , Meropenem/pharmacokinetics , Microbial Sensitivity Tests , Polymyxin B/administration & dosage , Polymyxin B/pharmacokinetics , Sulbactam/administration & dosage , Sulbactam/pharmacokinetics
2.
Article in English | MEDLINE | ID: mdl-28607025

ABSTRACT

Fosfomycin is widely used for the treatment of uncomplicated urinary tract infection (UTI), and it has recently been recommended that fosfomycin be used to treat infections caused by multidrug-resistant (MDR) Gram-negative bacilli. Whether urine acidification can improve bacterial susceptibility to fosfomycin oral dosing regimens has not been analyzed. The MIC of fosfomycin for 245 Gram-negative bacterial isolates, consisting of 158 Escherichia coli isolates and 87 Klebsiella isolates which were collected from patients with urinary tract infections, were determined at pH 6.0 and 7.0 using the agar dilution method. Monte Carlo simulation of the urinary fosfomycin area under the concentration-time curve (AUC) after a single oral dose of 3,000 mg fosfomycin and the MIC distribution were used to determine the probability of target attainment (PTA). Fosfomycin was effective against E. coli (MIC90 ≤ 16 µg/ml) but not against Klebsiella spp. (MIC90 > 512 µg/ml). Acidification of the environment increased the susceptibility of 71% of the bacterial isolates and resulted in a statistically significant decrease in bacterial survival. The use of a regimen consisting of a single oral dose of fosfomycin against an E. coli isolate with an MIC of ≤64 mg/liter was able to achieve a PTA of ≥90% for a target pharmacodynamic index (AUC/MIC) of 23 in urine; PTA was not achieved when the MIC was higher than 64 mg/liter. The cumulative fractions of the bacterial responses (CFR) were 99% and 55% against E. coli and Klebsiella spp., respectively, based on simulated drug exposure in urine with an acidic pH of 6.0. A decrease of the pH from 7.0 to 6.0 improved the PTA and CFR of the target pharmacodynamic index in both E. coli and Klebsiella isolates.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Escherichia coli Infections/drug therapy , Escherichia coli/drug effects , Fosfomycin/therapeutic use , Klebsiella Infections/drug therapy , Klebsiella/drug effects , Urinary Tract Infections/drug therapy , Area Under Curve , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Humans , Hydrogen-Ion Concentration , Klebsiella/isolation & purification , Klebsiella Infections/microbiology , Microbial Sensitivity Tests , Urinary Tract Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...