Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 333(3): 707-16, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20228155

ABSTRACT

Rho kinase, is the most widely studied downstream effector of the small Rho GTPase RhoA. Two Rho kinase isoforms have been described and are frequently referred to in the literature as ROCK1 and ROCK2. The RhoA-Rho kinase pathway has been implicated in the recruitment of cellular infiltrates to disease loci in a number of preclinical animal models of inflammatory disease. In this study, we used biochemical enzyme assays and a cellular target biomarker assay to define PF-4950834 [N-methyl-3-{[(4-pyridin-4-ylbenzoyl)amino]methyl}benzamide] as an ATP-competitive, selective Rho kinase inhibitor. We further used PF-4950834 to study the role of Rho kinase activation in lymphocyte and neutrophil migration in addition to the endothelial cell-mediated expression of adhesion molecules and chemokines, which are essential for leukocyte recruitment. The inhibitor blocked stromal cell-derived factor-1alpha-mediated chemotaxis of T lymphocytes in vitro and the synthesis of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 in activated human endothelial cells in vitro. The secretion of chemokines interleukin-8 and monocyte chemoattractant protein-1 was also inhibited in activated endothelial cells. In addition, when dosed orally, the compound potently inhibited neutrophil migration in a carrageenan-induced acute inflammation model. In summary, we have used a pharmacologic approach to link Rho kinase activation to multiple phenotypes that can contribute to leukocyte infiltration. Inhibition of this pathway therefore could be strongly anti-inflammatory and provide therapeutic benefit in chronic inflammatory diseases.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal , Benzamides/pharmacology , Protein Kinase Inhibitors/pharmacology , rho-Associated Kinases/antagonists & inhibitors , Animals , Benzamides/pharmacokinetics , Biological Availability , Blotting, Western , Cell Adhesion Molecules/biosynthesis , Cell Movement/drug effects , Chemokines/biosynthesis , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Flow Cytometry , Humans , Inflammation/chemically induced , Inflammation/prevention & control , Interleukin-8/biosynthesis , Jurkat Cells , Lymphocyte Activation/drug effects , Male , Myosin Light Chains/metabolism , Neutrophil Activation/drug effects , Protein Kinase Inhibitors/pharmacokinetics , Rats , Rats, Inbred Lew , Rats, Sprague-Dawley , Receptors, CCR2/biosynthesis
2.
J Med Chem ; 49(3): 1125-39, 2006 Feb 09.
Article in English | MEDLINE | ID: mdl-16451077

ABSTRACT

A series of pyrrolizidine esters, amides, and ureas was prepared and tested for 5-HT(4) and 5-HT(3) receptor binding, 5-HT(4) receptor agonism in the rat tunica muscularis mucosae (TMM) assay, and for 5-HT(3) receptor-mediated functional antagonism in the Bezold-Jarisch reflex assay. Several pyrrolizidine derivatives were identified with high affinity for the 5-HT(4) receptor, including benzamide 12a (SC-53116), a potent and selective 5-HT(4) partial agonist that exhibits efficacy in promoting antral contractions and activity in promoting gastric emptying in canine models. Also discovered were 5-HT(4) receptor antagonists, including imidazopyridine amide 12h (SC-53606), which is a potent and selective 5-HT(4) receptor antagonist with a pA(2) value of 8.13 in the rat TMM assay. N-Methyl indole ester 13d was identified as a potent 5-HT(4) antagonist with a pA(2) value of 8.93. High selectivity was observed for these pyrrolizidine derivatives versus other monoamine receptors, including 5-HT(1), 5-HT(2), D(1), D(2), alpha(1), alpha(2), and beta receptors.


Subject(s)
Amides/chemical synthesis , Benzamides/chemical synthesis , Imidazoles/chemical synthesis , Indoles/chemical synthesis , Pyrroles/chemical synthesis , Pyrrolizidine Alkaloids/chemical synthesis , Serotonin 5-HT4 Receptor Agonists , Serotonin 5-HT4 Receptor Antagonists , Amides/chemistry , Amides/pharmacology , Animals , Benzamides/chemistry , Benzamides/pharmacology , Bradycardia/prevention & control , Brain/drug effects , Brain/metabolism , Dogs , Esophagus/drug effects , Esophagus/physiology , Esters/chemical synthesis , Esters/chemistry , Esters/pharmacology , Female , Gastric Emptying/drug effects , Guinea Pigs , Imidazoles/chemistry , Imidazoles/pharmacology , In Vitro Techniques , Indoles/chemistry , Indoles/pharmacology , Male , Mice , Muscle Contraction/drug effects , Muscle, Smooth/drug effects , Muscle, Smooth/physiology , Pyloric Antrum/drug effects , Pyloric Antrum/physiology , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrrolizidine Alkaloids/chemistry , Pyrrolizidine Alkaloids/pharmacology , Radioligand Assay , Rats , Rats, Wistar , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...