Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 29(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38257204

ABSTRACT

In this work, we aim to understand and predict the thermal properties of automotive lubricants using non-equilibrium molecular dynamics. After a previous study on model materials for the mechanical parts of a car engine, we now focus on the thermal conductivity κ of the poly-α-olefin base oil (PAO4) using the well-known sink and source method to study the response of the system to an imposed heat flux. We present a detailed methodology for the calculation of κ, taking into account specific constraints related to the system under study, such as large steady-state fluctuations and rapidly growing stationarization times. We provide thermal conductivity results using four different force fields, including OPLS-AA, PCFF and COMPASS, in a temperature range of 300 to 500 K, which corresponds to the typical operating range of a car engine. The results are compared to experimental measurements performed on the commercial compound using the laser flash method. Agreement at room temperature is shown to be excellent for our in-house force field.

2.
J Phys Chem B ; 125(38): 10843-10853, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34533310

ABSTRACT

Organic/oxide interfaces play an important role in many areas of chemistry and in particular for lubrication and corrosion. Molecular dynamics simulations are the method of choice for providing complementary insight to experiments. However, the force fields used to simulate the interaction between molecules and oxide surfaces tend to capture only weak physisorption interactions, discarding the stabilizing Lewis acid/base interactions. We here propose a simple complement to the straightforward molecular mechanics description based on "out-of-the-box" Lennard-Jones potentials and electrostatic interactions: the addition of an attractive Gaussian potential between reactive sites of the surface and heteroatoms of adsorbed organic molecules, leading to the Gaussian Lennard-Jones (GLJ) potential. The interactions of four oxygenated and four amine molecules with the typical and widespread hematite and γ-alumina surfaces are investigated. The root mean square deviation (RMSD) for all probed molecules is only 5.7 kcal/mol, which corresponds to an error of 23% over hematite. On γ-alumina, the RMSD is 11.2 kcal/mol using a single parameter for all five chemically inequivalent surface aluminum atoms. Applying GLJ to the simulation of organic films on oxide surfaces demonstrates that the mobility of the surfactants is overestimated by the simplistic LJ potential, while GLJ and other qualitatively correct potentials show a strong structuration and slow dynamics of the surface films, as could be expected from the first-principles adsorption energies for model head groups.

3.
J Chem Inf Model ; 61(7): 3386-3396, 2021 07 26.
Article in English | MEDLINE | ID: mdl-34160214

ABSTRACT

We present the open-source python package DockOnSurf which automates the generation and optimization of low-energy adsorption configurations of molecules on extended surfaces and nanoparticles. DockOnSurf is especially geared toward handling polyfunctional flexible adsorbates. The use of this high-throughput workflow allows us to carry out the screening of adsorbate-surface configurations in a systematic, customizable, and traceable way, while keeping the focus on the chemically relevant structures. The screening strategy consists in splitting the exploration of the adsorbate-surface configurational space into chemically meaningful domains, that is, by choosing among different conformers to adsorb, surface adsorption sites, adsorbate anchoring points, and orientations and allowing dissociation of (acidic) protons. We demonstrate the performance of the main features based on varying examples, ranging from CO adsorption on a gold nanoparticle to sorbitol adsorption on hematite. Through the use of the presented program, we aim to foster efficiency, traceability, and ease of use in research within tribology, catalysis, nanoscience, and surface science in general.


Subject(s)
Gold , Metal Nanoparticles , Adsorption , High-Throughput Screening Assays , Surface Properties
4.
Langmuir ; 37(16): 4836-4846, 2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33847121

ABSTRACT

Molybdenum dithiocarbamates (MoDTCs) are a class of lubricant additives widely employed in automotives. Most of the studies concerning MoDTC take into account the dimeric structures because of their industrial relevance, with the mononuclear compounds usually neglected, because isolating and characterizing subgroups of MoDTC molecules are generally difficult. However, the byproducts of the synthesis of MoDTC can impact the friction reduction performance at metallic interfaces, and the effect of mononuclear MoDTC (mMoDTC) compounds in the lubrication has not been considered yet in the literature. In this study, we consider for the first time the impurities of MoDTC consisting of mononuclear compounds and combine experimental and computational techniques to elucidate the interaction of these impurities with binuclear MoDTC in commercial formulations. We present a preliminary strategy to separate a commercial MoDTC product in chemically different fractions. These fractions present different tribological behaviors depending on the relative amount of mononuclear and binuclear complexes. The calculations indicate that the dissociation mechanism of mMoDTC is similar to the one observed for the dimeric structures. However, the different chemical properties of mMoDTC impact the kinetics for the formation of the beneficial molybdenum disulfide (MoS2) layers, as shown by the tribological experiments. These results help to understand the functionality of MoDTC lubricant additives, providing new insights into the complex synergy between the different chemical structures.

5.
J Chem Phys ; 154(8): 084701, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33639739

ABSTRACT

To accelerate the conversion to more sustainable lubricants, there is a need for an improved understanding of the adsorption at the solid/liquid interface. As a first step, the density functional theory computed adsorption energies can be used to screen the ability of additives to cover a surface. Analogously to what has been found in catalysis with the universal scaling relations, we investigate here if a general universal ranking of additives can be found, independently of the surface considered. We divided our set of 25 diverse representative molecules into aprotic and protic molecules. We compared their adsorption over alumina and hematite, which are models of surface oxidized aluminum and steel, respectively. The adsorption energy ranking of our set is not strongly affected by alumina hydration. In contrast, adsorption on hematite is more strongly affected by hydration since all exposed Fe Lewis acid sites are converted into hydroxylated Brønsted basic sites. However, the ranking obtained on hydrated hematite is close to the one obtained on dry alumina, paving the road to a fast screening of additives. In our library, protic molecules are more strongly adsorbed than non-protic molecules. In particular, methyl and dimethyl phosphates are the most strongly adsorbed ones, followed by N-methyldiethanolamine, succinimide, and ethanoic acid. Additives combining these functional groups are expected to strongly adsorb at the solid/liquid interface and, therefore, likely to be relevant components of lubricant formulations.

6.
J Phys Chem A ; 123(32): 7007-7015, 2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31318554

ABSTRACT

Molybdenum dithiocarbamate (MoDTC) is a well-known lubricant additive, which, in tribological conditions, is capable of forming layers of MoS2 with excellent friction reduction properties. Despite being widely employed in commercial engine oils, a comprehensive theoretical description of the properties of MoDTC is still lacking. In this work, we employ density functional theory to study the structural, electronic, and vibrational properties of MoDTC. We investigate the relative stability of different isomers, different hydrocarbon terminations, and oxidized complexes. Oxidation was found to be energetically favorable for a wide range of conditions, and the most favorable position for oxygen atoms in MoDTC turned out to be the ligand position. These results, along with the calculated reaction energies for different dissociation paths, can be useful to better identify the elementary steps of the decomposition process of MoDTC.

SELECTION OF CITATIONS
SEARCH DETAIL
...