Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Syst Biol Appl ; 10(1): 18, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38360881

ABSTRACT

A major challenge in precision oncology is to detect targetable cancer vulnerabilities in individual patients. Modeling high-throughput omics data in biological networks allows identifying key molecules and processes of tumorigenesis. Traditionally, network inference methods rely on many samples to contain sufficient information for learning, resulting in aggregate networks. However, to implement patient-tailored approaches in precision oncology, we need to interpret omics data at the level of individual patients. Several single-sample network inference methods have been developed that infer biological networks for an individual sample from bulk RNA-seq data. However, only a limited comparison of these methods has been made and many methods rely on 'normal tissue' samples as reference, which are not always available. Here, we conducted an evaluation of the single-sample network inference methods SSN, LIONESS, SWEET, iENA, CSN and SSPGI using transcriptomic profiles of lung and brain cancer cell lines from the CCLE database. The methods constructed functional gene networks with distinct network characteristics. Hub gene analyses revealed different degrees of subtype-specificity across methods. Single-sample networks were able to distinguish between tumor subtypes, as exemplified by node strength clustering, enrichment of known subtype-specific driver genes among hubs and differential node strength. We also showed that single-sample networks correlated better to other omics data from the same cell line as compared to aggregate networks. We conclude that single-sample network inference methods can reflect sample-specific biology when 'normal tissue' samples are absent and we point out peculiarities of each method.


Subject(s)
Neoplasms , Humans , Neoplasms/genetics , Algorithms , Precision Medicine , Gene Regulatory Networks/genetics , Transcriptome
2.
Front Bioinform ; 2: 1036963, 2022.
Article in English | MEDLINE | ID: mdl-36466148

ABSTRACT

In precision oncology, therapy stratification is done based on the patients' tumor molecular profile. Modeling and prediction of the drug response for a given tumor molecular type will further improve therapeutic decision-making for cancer patients. Indeed, deep learning methods hold great potential for drug sensitivity prediction, but a major problem is that these models are black box algorithms and do not clarify the mechanisms of action. This puts a limitation on their clinical implementation. To address this concern, many recent studies attempt to overcome these issues by developing interpretable deep learning methods that facilitate the understanding of the logic behind the drug response prediction. In this review, we discuss strengths and limitations of recent approaches, and suggest future directions that could guide further improvement of interpretable deep learning in drug sensitivity prediction in cancer research.

3.
BMC Bioinformatics ; 23(1): 363, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36064320

ABSTRACT

BACKGROUND: Representing the complex interplay between different types of biomolecules across different omics layers in multi-omics networks bears great potential to gain a deep mechanistic understanding of gene regulation and disease. However, multi-omics networks easily grow into giant hairball structures that hamper biological interpretation. Module detection methods can decompose these networks into smaller interpretable modules. However, these methods are not adapted to deal with multi-omics data nor consider topological features. When deriving very large modules or ignoring the broader network context, interpretability remains limited. To address these issues, we developed a SUbgraph BAsed mulTi-OMIcs Clustering framework (SUBATOMIC), which infers small and interpretable modules with a specific topology while keeping track of connections to other modules and regulators. RESULTS: SUBATOMIC groups specific molecular interactions in composite network subgraphs of two and three nodes and clusters them into topological modules. These are functionally annotated, visualized and overlaid with expression profiles to go from static to dynamic modules. To preserve the larger network context, SUBATOMIC investigates statistically the connections in between modules as well as between modules and regulators such as miRNAs and transcription factors. We applied SUBATOMIC to analyze a composite Homo sapiens network containing transcription factor-target gene, miRNA-target gene, protein-protein, homologous and co-functional interactions from different databases. We derived and annotated 5586 modules with diverse topological, functional and regulatory properties. We created novel functional hypotheses for unannotated genes. Furthermore, we integrated modules with condition specific expression data to study the influence of hypoxia in three cancer cell lines. We developed two prioritization strategies to identify the most relevant modules in specific biological contexts: one considering GO term enrichments and one calculating an activity score reflecting the degree of differential expression. Both strategies yielded modules specifically reacting to low oxygen levels. CONCLUSIONS: We developed the SUBATOMIC framework that generates interpretable modules from integrated multi-omics networks and applied it to hypoxia in cancer. SUBATOMIC can infer and contextualize modules, explore condition or disease specific modules, identify regulators and functionally related modules, and derive novel gene functions for uncharacterized genes. The software is available at https://github.com/CBIGR/SUBATOMIC .


Subject(s)
MicroRNAs , Neoplasms , Cluster Analysis , Computational Biology/methods , Gene Regulatory Networks , Humans , Hypoxia , MicroRNAs/genetics , MicroRNAs/metabolism , Neoplasms/genetics , Transcription Factors/metabolism
4.
Sci Rep ; 9(1): 6267, 2019 04 18.
Article in English | MEDLINE | ID: mdl-31000776

ABSTRACT

Human influenza A viruses elicit short-term respiratory infections with considerable mortality and morbidity. While H3N2 viruses circulate for more than 50 years, the recent introduction of pH1N1 viruses presents an excellent opportunity for a comparative analysis of the genome-wide evolutionary forces acting on both subtypes. Here, we inferred patches of sites relevant for adaptation, i.e. being under positive selection, on eleven viral protein structures, from all available data since 1968 and correlated these with known functional properties. Overall, pH1N1 have more patches than H3N2 viruses, especially in the viral polymerase complex, while antigenic evolution is more apparent for H3N2 viruses. In both subtypes, NS1 has the highest patch and patch site frequency, indicating that NS1-mediated viral attenuation of host inflammatory responses is a continuously intensifying process, elevated even in the longtime-circulating subtype H3N2. We confirmed the resistance-causing effects of two pH1N1 changes against oseltamivir in NA activity assays, demonstrating the value of the resource for discovering functionally relevant changes. Our results represent an atlas of protein regions and sites with links to host adaptation, antiviral drug resistance and immune evasion for both subtypes for further study.


Subject(s)
Genome, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Influenza, Human/genetics , Drug Resistance, Viral/genetics , Evolution, Molecular , Humans , Influenza A Virus, H1N1 Subtype/pathogenicity , Influenza A Virus, H3N2 Subtype/pathogenicity , Influenza, Human/pathology , Influenza, Human/virology , Oseltamivir/therapeutic use , Respiratory Tract Infections/genetics , Respiratory Tract Infections/virology , Viral Nonstructural Proteins/genetics , Virus Replication/genetics
5.
Sci Rep ; 8(1): 373, 2018 01 10.
Article in English | MEDLINE | ID: mdl-29321538

ABSTRACT

Monitoring changes in influenza A virus genomes is crucial to understand its rapid evolution and adaptation to changing conditions e.g. establishment within novel host species. Selective sweeps represent a rapid mode of adaptation and are typically observed in human influenza A viruses. We describe Sweep Dynamics (SD) plots, a computational method combining phylogenetic algorithms with statistical techniques to characterize the molecular adaptation of rapidly evolving viruses from longitudinal sequence data. SD plots facilitate the identification of selective sweeps, the time periods in which these occurred and associated changes providing a selective advantage to the virus. We studied the past genome-wide adaptation of the 2009 pandemic H1N1 influenza A (pH1N1) and seasonal H3N2 influenza A (sH3N2) viruses. The pH1N1 influenza virus showed simultaneous amino acid changes in various proteins, particularly in seasons of high pH1N1 activity. Partially, these changes resulted in functional alterations facilitating sustained human-to-human transmission. In the evolution of sH3N2 influenza viruses, we detected changes characterizing vaccine strains, which were occasionally revealed in selective sweeps one season prior to the WHO recommendation. Taken together, SD plots allow monitoring and characterizing the adaptive evolution of influenza A viruses by identifying selective sweeps and their associated signatures.


Subject(s)
Computational Biology/methods , Hemagglutinins, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H3N2 Subtype/genetics , Algorithms , Evolution, Molecular , Hemagglutinins, Viral/chemistry , Hemagglutinins, Viral/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/virology , Models, Molecular , Phylogeny , Protein Conformation , Sequence Analysis, RNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...