Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Cells ; 12(18)2023 09 21.
Article in English | MEDLINE | ID: mdl-37759552

ABSTRACT

The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Humans , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Mutation/genetics , RNA, Messenger/metabolism , Trinucleotide Repeat Expansion/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Fragile X Syndrome/therapy
2.
Brain Sci ; 12(11)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36421873

ABSTRACT

The premutation expansion of the Fragile X Messenger Ribonucleoprotein 1 (FMR1) gene on the X chromosome has been linked to a range of clinical and subclinical features. Nearly half of men with FMR1 premutation develop a neurodegenerative disorder; Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS). In this syndrome, cognitive executive decline and psychiatric changes may co-occur with major motor features, and in this study, we explored the interrelationships between these three domains in a sample of adult males affected with FXTAS. A sample of 23 adult males aged between 48 and 80 years (mean = 62.3; SD = 8.8), carrying premutation expansions between 45 and 118 CGG repeats, and affected with FXTAS, were included in this study. We employed a battery of cognitive assessments, two standard motor rating scales, and two self-reported measures of psychiatric symptoms. When controlling for age and/or educational level, where appropriate, there were highly significant correlations between motor rating score for ICARS gait domain, and the scores representing global cognitive decline (ACE-III), processing speed (SDMT), immediate memory (Digit Span), and depression and anxiety scores derived from both SCL90 and DASS instruments. Remarkably, close relationships of UPDRS scores, representing the contribution of Parkinsonism to FXTAS phenotypes, were exclusive to psychiatric scores. Highly significant relationships between CGG repeat size and most scores for three phenotypic domains suggest a close tracking with genetic liability. These findings of relationships between a constellation of phenotypic domains in male PM carriers with FXTAS are reminiscent of other conditions associated with disruption to cerebro-cerebellar circuits.

3.
BMJ Open ; 12(2): e052032, 2022 Feb 25.
Article in English | MEDLINE | ID: mdl-35217535

ABSTRACT

PURPOSE: Parkinson's disease (PD) is a neurodegenerative disorder associated with progressive disability. While the precise aetiology is unknown, there is evidence of significant genetic and environmental influences on individual risk. The Australian Parkinson's Genetics Study seeks to study genetic and patient-reported data from a large cohort of individuals with PD in Australia to understand the sociodemographic, genetic and environmental basis of PD susceptibility, symptoms and progression. PARTICIPANTS: In the pilot phase reported here, 1819 participants were recruited through assisted mailouts facilitated by Services Australia based on having three or more prescriptions for anti-PD medications in their Pharmaceutical Benefits Scheme records. The average age at the time of the questionnaire was 64±6 years. We collected patient-reported information and sociodemographic variables via an online (93% of the cohort) or paper-based (7%) questionnaire. One thousand five hundred and thirty-two participants (84.2%) met all inclusion criteria, and 1499 provided a DNA sample via traditional post. FINDINGS TO DATE: 65% of participants were men, and 92% identified as being of European descent. A previous traumatic brain injury was reported by 16% of participants and was correlated with a younger age of symptom onset. At the time of the questionnaire, constipation (36% of participants), depression (34%), anxiety (17%), melanoma (16%) and diabetes (10%) were the most reported comorbid conditions. FUTURE PLANS: We plan to recruit sex-matched and age-matched unaffected controls, genotype all participants and collect non-motor symptoms and cognitive function data. Future work will explore the role of genetic and environmental factors in the aetiology of PD susceptibility, onset, symptoms, and progression, including as part of international PD research consortia.


Subject(s)
Parkinson Disease , Anxiety , Australia/epidemiology , Constipation/etiology , Humans , Male , Parkinson Disease/complications , Parkinson Disease/epidemiology , Parkinson Disease/genetics , Surveys and Questionnaires
4.
Cell ; 185(1): 95-112.e18, 2022 01 06.
Article in English | MEDLINE | ID: mdl-34995520

ABSTRACT

Fingerprints are of long-standing practical and cultural interest, but little is known about the mechanisms that underlie their variation. Using genome-wide scans in Han Chinese cohorts, we identified 18 loci associated with fingerprint type across the digits, including a genetic basis for the long-recognized "pattern-block" correlations among the middle three digits. In particular, we identified a variant near EVI1 that alters regulatory activity and established a role for EVI1 in dermatoglyph patterning in mice. Dynamic EVI1 expression during human development supports its role in shaping the limbs and digits, rather than influencing skin patterning directly. Trans-ethnic meta-analysis identified 43 fingerprint-associated loci, with nearby genes being strongly enriched for general limb development pathways. We also found that fingerprint patterns were genetically correlated with hand proportions. Taken together, these findings support the key role of limb development genes in influencing the outcome of fingerprint patterning.


Subject(s)
Dermatoglyphics , Fingers/growth & development , Organogenesis/genetics , Polymorphism, Single Nucleotide , Toes/growth & development , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Asian People/genetics , Body Patterning/genetics , Child , Cohort Studies , Female , Forelimb/growth & development , Genetic Loci , Genome-Wide Association Study , Humans , MDS1 and EVI1 Complex Locus Protein/genetics , Male , Mice , Middle Aged , Young Adult
5.
Front Psychiatry ; 12: 742929, 2021.
Article in English | MEDLINE | ID: mdl-34925088

ABSTRACT

Introduction: Premutation expansions (55-200 CGG repeats) of the Fragile X Mental Retardation 1 (FMR1) gene on the X chromosome are associated with a range of clinical features. Apart from the most severe - Fragile X-Associated Tremor/Ataxia Syndrome (FXTAS) - where the most typical white matter changes affect cerebellar peduncles, more subtle changes may include impairment of executive functioning, affective disorders and/or subtle motor changes. Here we aimed to examine whether performance in selected components of executive functioning is associated with subclinical psychiatric symptoms in non-FXTAS, adult females carrying the FMR1 premutation. Methods and Sample: A total of 47 female premutation carriers (sub-symptomatic for FXTAS) of wide age range (26-77 years; M = 50.3; SD = 10.9) were assessed using standard neuropsychological tests, three motor rating scales and self-reported measures of psychiatric symptoms using the Symptom Checklist-90-Revised (SCL-90-R). Results: After adjusting for age and educational level where appropriate, both non-verbal reasoning and response inhibition as assessed on the Stroop task (i.e., the ability to resolve cognitive interference) were associated with a range of primary psychiatric symptom dimensions, and response inhibition uniquely predicted some primary symptoms and global psychiatric features. Importantly, lower scores (worse performance) in response inhibition were also strongly correlated with higher (worse) scores on standard motor rating scales for tremor-ataxia and for parkinsonism. Conclusion: These results provide evidence for the importance of response inhibition in the manifestation of psychiatric symptoms and subtle tremor-ataxia motor features, suggestive of the presence of early cerebellar changes in female premutation carriers.

6.
Front Psychiatry ; 12: 747268, 2021.
Article in English | MEDLINE | ID: mdl-34880790

ABSTRACT

Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) is a neurodegenerative disorder affecting carriers of premutation alleles (PM) of the X-linked FMR1 gene, which contain CGG repeat expansions of 55-200 range in a non-coding region. This late-onset disorder is characterised by the presence of tremor/ataxia and cognitive decline, associated with the white matter lesions throughout the brain, especially involving the middle cerebellar peduncles. Nearly half of older male and ~ 20% of female PM carriers develop FXTAS. While there is evidence for mitochondrial dysfunction in neural and some peripheral tissues from FXTAS patients (though less obvious in the non-FXTAS PM carriers), the results from peripheral blood mononuclear cells (PBMC) are still controversial. Motor, cognitive, and neuropsychiatric impairments were correlated with measures of mitochondrial and non-mitochondrial respiratory activity, AMPK, and TORC1 cellular stress-sensing protein kinases, and CGG repeat size, in a sample of adult FXTAS male and female carriers. Moreover, the levels of these cellular measures, all derived from Epstein- Barr virus (EBV)- transformed and easily accessible blood lymphoblasts, were compared between the FXTAS (N = 23) and non-FXTAS (n = 30) subgroups, and with baseline data from 33 healthy non-carriers. A significant hyperactivity of cellular bioenergetics components as compared with the baseline data, more marked in the non-FXTAS PMs, was negatively correlated with repeat numbers at the lower end of the CGG-PM distribution. Significant associations of these components with motor impairment measures, including tremor-ataxia and parkinsonism, and neuropsychiatric changes, were prevalent in the FXTAS subgroup. Moreover, a striking elevation of AMPK activity, and a decrease in TORC1 levels, especially in the non-FXTAS carriers, were related to the size of CGG expansion. The bioenergetics changes in blood lymphoblasts are biomarkers of the clinical status of FMR1 carriers. The relationship between these changes and neurological involvement in the affected carriers suggests that brain bioenergetic alterations are reflected in this peripheral tissue. A possible neuroprotective role of stress sensing kinase, AMPK, in PM carriers, should be addressed in future longitudinal studies. A decreased level of TORC1-the mechanistic target of the rapamycin complex, suggests a possible future approach to therapy in FXTAS.

7.
Int J Mol Sci ; 22(19)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34638732

ABSTRACT

The X-linked FMR1 gene contains a non-coding trinucleotide repeat in its 5' region that, in normal, healthy individuals contains 20-44 copies. Large expansions of this region (>200 copies) cause fragile X syndrome (FXS), but expansions of 55-199 copies (referred to as premutation alleles) predispose carriers to a neurodegenerative disease called fragile X-associated tremor/ataxia syndrome (FXTAS). The cytopathological mechanisms underlying FXTAS are poorly understood, but abnormalities in mitochondrial function are believed to play a role. We previously reported that lymphoblastoid cell lines (LCLs, or lymphoblasts) of premutation carriers have elevated mitochondrial respiratory activities. In the carriers, especially those not clinically affected with FXTAS, AMP-activated protein kinase (AMPK) activity was shown to be elevated. In the FXTAS patients, however, it was negatively correlated with brain white matter lesions, suggesting a protective role in the molecular mechanisms. Here, we report an enlarged and extended study of mitochondrial function and associated cellular stress-signaling pathways in lymphoblasts isolated from male and female premutation carriers, regardless of their clinical status, and healthy controls. The results confirmed the elevation of AMPK and mitochondrial respiratory activities and reduction in reactive O2 species (ROS) levels in premutation cells and revealed for the first time that target of rapamycin complex I (TORC1) activities are reduced. Extensive correlation, multiple regression, and principal components analysis revealed the best fitting statistical explanations of these changes in terms of the other variables measured. These suggested which variables might be the most "proximal" regulators of the others in the extensive network of known causal interactions amongst the measured parameters of mitochondrial function and cellular stress signaling. In the resulting model, the premutation alleles activate AMPK and inhibit both TORC1 and ROS production, the reduced TORC1 activity contributes to activation of AMPK and of nonmitochondrial metabolism, and the higher AMPK activity results in elevated catabolic metabolism, mitochondrial respiration, and ATP steady state levels. In addition, the results suggest a separate CGG repeat number-dependent elevation of TORC1 activity that is insufficient to overcome the inhibition of TORC1 in premutation cells but may presage the previously reported activation of TORC1 in FXS cells.


Subject(s)
AMP-Activated Protein Kinases , Alleles , Fragile X Mental Retardation Protein , Fragile X Syndrome , Lymphocytes/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mitochondria , Mitochondrial Proteins , Signal Transduction/genetics , Trinucleotide Repeat Expansion , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Female , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Humans , Male , Mechanistic Target of Rapamycin Complex 1/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
8.
Cerebellum Ataxias ; 8(1): 15, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34116720

ABSTRACT

BACKGROUND: Smaller expansions of CGG trinucleotide repeats in the FMR1 X-linked gene termed 'premutation' lead to a neurodegenerative disorder: Fragile X Associated Tremor/Ataxia Syndrome (FXTAS) in nearly half of aged carrier males, and 8-16% females. Core features include intention tremor, ataxia, and cognitive decline, and white matter lesions especially in cerebellar and periventricular locations. A 'toxic' role of elevated and expanded FMR1 mRNA has been linked to the pathogenesis of this disorder. The emerging issue concerns the trajectory of the neurodegenerative changes: is the pathogenetic effect confined to overt clinical manifestations? Here we explore the relationships between motor and cognitive scale scores in a sample of 57 asymptomatic adult female premutation carriers of broad age range. METHODS: Three motor scale scores (ICARS-for tremor/ataxia, UPDRS-for parkinsonism, and Clinical Tremor) were related to 11 cognitive tests using Spearman's rank correlations. Robust regression, applied in relationships between all phenotypic measures, and genetic molecular and demographic data, identified age and educational levels as common correlates of these measures, which were then incorporated as confounders in correlation analysis. RESULTS: Cognitive tests demonstrating significant correlations with motor scores were those assessing non-verbal reasoning on Matrix Reasoning (p-values from 0.006 to 0.011), and sequencing and alteration on Trails-B (p-values from 0.008 to 0.001). Those showing significant correlations with two motor scores-ICARS and Clinical Tremor- were psychomotor speed on Symbol Digit Modalities (p-values from 0.014 to 0.02) and working memory on Digit Span Backwards (p-values from 0.024 to 0.011). CONCLUSIONS: Subtle motor impairments correlating with cognitive, particularly executive, deficits may occur in female premutation carriers not meeting diagnostic criteria for FXTAS. This pattern of cognitive deficits is consistent with those seen in other cerebellar disorders. Our results provide evidence that more than one category of clinical manifestation reflecting cerebellar changes - motor and cognitive - may be simultaneously affected by premutation carriage across a broad age range in asymptomatic carriers.

9.
Twin Res Hum Genet ; 24(2): 95-102, 2021 04.
Article in English | MEDLINE | ID: mdl-33757613

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) occurs in carriers of fragile X mental retardation 1 (FMR1) X-linked small CGG expansion (gray zone [GZ] and premutation [PM]) alleles, containing 41-200 repeats. Major features comprise kinetic tremor, gait ataxia, cognitive decline and cerebellar peduncular white matter lesions, but atypical/incomplete FXTAS may occur. We explored the possibility of polygenic effects modifying the FXTAS spectrum phenotypes. We used three motor scales and selected cognitive tests in a series of three males and three females from a single sibship carrying PM or GZ alleles (44 to 75 repeats). The molecular profiles from these siblings were determined by genomewide association study with single-nucleotide polymorphism (SNP) genotyping by Illumina Global Screening Array. Nonparametric linkage analysis was applied and Parkinson's disease (PD) polygenic risk scores (PRSs) were calculated for all the siblings, based on 107 known risk variants. All male and female siblings manifested similar kinetic tremor phenotypes. In contrast to FXTAS, they showed negligible gait ataxia, and few white matter lesions on MRI. Cognitive functioning was unaffected. Suggestive evidence of linkage to a broad region of the short arm of chromosome 10 was obtained, and median PD PRS for the sibship fell within the top 30% of a sample of over 500,000 UK and Australian controls. The genomewide study results are suggestive of modifying effects of genetic risk loci linked to PD, on the neurological phenotype of FMR1-CGG small expansion carriers, resulting in an oligosymptomatic kinetic tremor seen in FXTAS spectrum, but also consistent with essential tremor.


Subject(s)
Essential Tremor , Fragile X Mental Retardation Protein , Australia , Female , Fragile X Mental Retardation Protein/genetics , Humans , Male , Phenotype , Siblings
10.
Front Mol Biosci ; 7: 577246, 2020.
Article in English | MEDLINE | ID: mdl-33511153

ABSTRACT

Expansions of the CGG repeat in the non-coding segment of the FMR1 X-linked gene are associated with a variety of phenotypic changes. Large expansions (>200 repeats), which cause a severe neurodevelopmental disorder, the fragile x syndrome (FXS), are transmitted from the mothers carrying smaller, unstable expansions ranging from 55 to 200 repeats, termed the fragile X premutation. Female carriers of this premutation may themselves experience a wide range of clinical problems throughout their lifespan, the most severe being the late onset neurodegenerative condition called "Fragile X-Associated Tremor Ataxia Syndrome" (FXTAS), occurring between 8 and 16% of these carriers. Male premutation carriers, although they do not transmit expanded alleles to their daughters, have a much higher risk (40-50%) of developing FXTAS. Although this disorder is more prevalent and severe in male than female carriers, specific sex differences in clinical manifestations and progress of the FXTAS spectrum have been poorly documented. Here we compare the pattern and rate of progression (per year) in three motor scales including tremor/ataxia (ICARS), tremor (Clinical Tremor Rating scale, CRST), and parkinsonism (UPDRS), and in several cognitive and psychiatric tests scores, between 13 female and 9 male carriers initially having at least one of the motor scores ≥10. Moreover, we document the differences in each of the clinical and cognitive measures between the cross-sectional samples of 21 female and 24 male premutation carriers of comparable ages with FXTAS spectrum disorder (FSD), that is, who manifest one or more features of FXTAS. The results of progression assessment showed that it was more than twice the rate in male than in female carriers for the ICARS-both gait ataxia and kinetic tremor domains and twice as high in males on the CRST scale. In contrast, sex difference was negligible for the rate of progress in UPDRS, and all the cognitive measures. The overall psychiatric pathology score (SCL-90), as well as Anxiety and Obsessive/Compulsive domain scores, showed a significant increase only in the female sample. The pattern of sex differences for progression in motor scores was consistent with the results of comparison between larger, cross-sectional samples of male and female carriers affected with the FSD. These results were in concert with sex-specific distribution of MRI T2 white matter hyperintensities: all males, but no females, showed the middle cerebellar peduncle white matter hyperintensities (MCP sign), although the distribution and severity of these hyperintensities in the other brain regions were not dissimilar between the two sexes. In conclusion, the magnitude and specific pattern of sex differences in manifestations and progression of clinically recorded changes in motor performance and MRI lesion distribution support, on clinical grounds, the possibility of certain sex-limited factor(s) which, beyond the predictable effect of the second, normal FMR1 alleles in female premutation carriers, may have neuroprotective effects, specifically concerning the cerebellar circuitry.

11.
Front Neurol ; 10: 832, 2019.
Article in English | MEDLINE | ID: mdl-31456732

ABSTRACT

This study explores the relationships between hemispheric and cerebellar white matter lesions and motor and cognitive impairments in male carriers of Fragile-X Mental Retardation 1 (FMR1) premutation alleles, and in a subgroup of these carriers affected with Fragile X-Associated Tremor/Ataxia syndrome (FXTAS). Regional and total white matter hyperintensities (wmhs) on MRI, assessed using semiquantitative scores, were correlated with three motor rating scales (ICARS, UPDRS, Tremor), and neuropsychological measures of non-verbal reasoning, working memory and processing speed, in a sample of 30 male premutation carriers aged 39-81 years, and separately in a subsample of 17 of these carriers affected with FXTAS. There were significant relationships between wmhs in the infratentorial region and all three motor scales, as well as several cognitive measures-Prorated IQ, Matrix Reasoning, Similarities, and the Symbol Digit Modalities Test (SDMT), in the total sample of carriers, as well as in the FXTAS group separately. This shows that whms within the infratentorial region correlates across the categories of clinical status with a range of motor and cognitive impairments. In the FXTAS group, there was a highly significant relationship between supratentorial (periventricular) lesions and parkinsonism, and between both periventricular and supratentorial deep white matter and ICARS ataxia score. These findings further support the relevance of white matter changes in different brain regions to the motor and cognitive deficits across the spectrum of premutation involvement. Future longitudinal studies using larger sample sizes will be necessary to examine the factors that lead to conversion to a greater extent of neurological involvement as seen in the progression across the FXTAS spectrum.

12.
Front Genet ; 9: 531, 2018.
Article in English | MEDLINE | ID: mdl-30483310

ABSTRACT

The fragile X premutation (PM) allele contains a CGG expansion of 55-200 repeats in the FMR1 gene's promoter. Male PM carriers have an elevated risk of developing neurological and psychiatric changes, including an approximately 50% risk of the fragile X-associated tremor/ataxia syndrome (FXTAS). The aim of this study was to assess the relationships of regional white matter hyperintensities (wmhs) semi-quantitative scores, clinical status, motor (UPDRS, ICARS, Tremor) scales, and cognitive impairments, with FMR1-specific genetic changes, in a sample of 32 unselected male PM carriers aged 39-81 years. Half of these individuals were affected with FXTAS, while the non-FXTAS group comprised subcategories of non-affected individuals and individuals affected with non-syndromic changes. The dynamics of pathological processes at the cellular level relevant to the clinical status of PM carriers was investigated using the enzyme AMP-activated protein kinase (AMPK), which is a highly sensitive cellular stress-sensing alarm protein. This enzyme, as well as genetic markers - CGG repeat number and the levels of the FMR1 mRNA - were assessed in blood lymphoblasts. The results showed that the repeat distribution for FXTAS individuals peaked at 85-90 CGGs; non-FXTAS carriers were distributed within the lowest end of the PM repeat range, and non-syndromic carriers assumed an intermediate position. The size of the CGG expansion was significantly correlated, across all three categories, with infratentorial and total wmhs and with all motor scores, and the FMR1 mRNA levels with all the wmh scores, whilst AMPK activity showed considerable elevation in the non-FXTAS combined group, decreasing in the FXTAS group, proportionally to increasing severity of the wmhs and tremor/ataxia. We conclude that the size of the CGG expansion relates to the risk for FXTAS, to severity of infratentorial wmhs lesions, and to all three motor scale scores. FMR1 mRNA shows a strong association with the extent of wmhs, which is the most sensitive marker of the pathological process. However, the AMPK activity findings - suggestive of a role of this enzyme in the risk of FXTAS - need to be verified and expanded in future studies using larger samples and longitudinal assessment.

13.
Mov Disord ; 33(7): 1178-1181, 2018 07.
Article in English | MEDLINE | ID: mdl-30153395

ABSTRACT

Background and Objective There is convincing evidence that small CGG expansion (41-54 repeats): FMR1 "gray zone" alleles (GZ) contribute to the risk of parkinsonism in males, but there is insufficient corresponding data in females. This study intends to fill this gap. Methods We screened whole-blood-derived DNA from a cohort of 601 females diagnosed with idiopathic PD, and from dry Guthrie blood spots from a local sample of 1,005 female newborns (population controls), for the size of the FMR1 CGG repeat using a PCR technique. Results We found a significant excess (8.2%) of GZ carriers compared with 5.2% in the control sample, with a P value of 0.009 for the difference in proportions. Conclusion FMR1 gray zone alleles are a significant risk factor for parkinsonism in females. These population data and occasional reports of FXTAS-like or parkinsonian manifestations in carriers suggest possible mechanisms whereby the effects of these alleles synergize with the existing pathologies underpinning parkinsonism. © 2018 International Parkinson and Movement Disorder Society.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Genetic Predisposition to Disease/genetics , Parkinsonian Disorders/genetics , Trinucleotide Repeat Expansion/genetics , Cohort Studies , DNA Mutational Analysis , Female , Gene Frequency , Genotype , Humans , Parkinsonian Disorders/epidemiology , Risk Factors , Sex Factors
14.
Autism Res ; 11(6): 846-856, 2018 06.
Article in English | MEDLINE | ID: mdl-29624910

ABSTRACT

Recent findings suggest that children with Autism Spectrum Disorder (ASD) are larger in size for head circumference (HC), height, and weight compared to typically developing (TD) children; however, little is known about their rate of growth, especially in height and weight. The current study aimed to: (a) confirm and extend upon previous findings of early generalized overgrowth in ASD; and (b) determine if there were any differences in the rate of growth between infants and toddlers with ASD compared to their TD peers. Measurements of HC, height, and weight were available for 135 boys with ASD and 74 TD boys, from birth through 3 years of age. Size and growth rate in HC, height, and weight were analyzed using a linear mixed-effects model. Infants with ASD were significantly smaller in size at birth for HC, body length, and weight compared to TD infants (all P < 0.05); however, they grew at a significantly faster rate in HC and height in comparison to the TD children (P < 0.001); there was no significant difference between the groups in growth rate for weight (P > 0.05). The results confirmed that male infants and toddlers with ASD exhibit skeletal growth dysregulation early in life. Autism Res 2018, 11: 846-856. © 2018 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Recent findings suggest that infants with Autism Spectrum Disorder (ASD) are smaller in size at birth compared to typically developing infants but grow larger than their peers during the first year. Little is known about their rate of growth, especially for height and weight. Our findings confirmed that infants with ASD are smaller in size at birth for head circumference (HC), height, and weight, but grow at a faster rate in HC and height than their peers from birth to 3 years.


Subject(s)
Autism Spectrum Disorder/complications , Autism Spectrum Disorder/physiopathology , Body Size/physiology , Growth Disorders/complications , Growth Disorders/physiopathology , Australia , Body Height , Body Weight , Cephalometry , Child, Preschool , Head , Humans , Infant , Infant, Newborn , Male
15.
Neurodegener Dis ; 17(1): 22-30, 2017.
Article in English | MEDLINE | ID: mdl-27602566

ABSTRACT

BACKGROUND: The need for accessible cellular biomarkers of neurodegeneration in carriers of the fragile X mental retardation 1 (FMR1) premutation (PM) alleles. OBJECTIVE: To assess the mitochondrial status and respiration in blood lymphoblasts from PM carriers manifesting the fragile X-associated tremor/ataxia syndrome (FXTAS) and non-FXTAS carriers, and their relationship with the brain white matter lesions. METHODS: Oxygen consumption rates (OCR) and ATP synthesis using a Seahorse XFe24 Extracellular Flux Analyser, and steady-state parameters of mitochondrial function were assessed in cultured lymphoblasts from 16 PM males (including 11 FXTAS patients) and 9 matched controls. The regional white matter hyperintensity (WMH) scores were obtained from MRI. RESULTS: Mitochondrial respiratory activity was significantly elevated in lymphoblasts from PM carriers compared with controls, with a 2- to 3-fold increase in basal and maximum OCR attributable to complex I activity, and ATP synthesis, accompanied by unaltered mitochondrial mass and membrane potential. The changes, which were more advanced in FXTAS patients, were significantly associated with the WMH scores in the supratentorial regions. CONCLUSION: The dramatic increase in mitochondrial activity in lymphoblasts from PM carriers may represent either the early stages of disease (specific alterations in short-lived blood cells) or an activation of the lymphocytes under pathological situations. These changes may provide early, convenient blood biomarkers of clinical involvements.


Subject(s)
Ataxia/blood , Ataxia/diagnostic imaging , Brain/diagnostic imaging , Fragile X Syndrome/blood , Fragile X Syndrome/diagnostic imaging , Tremor/blood , Tremor/diagnostic imaging , White Matter/diagnostic imaging , Adolescent , Aged , Aged, 80 and over , Ataxia/genetics , Biomarkers/blood , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Heterozygote , Humans , Lymphocytes/metabolism , Magnetic Resonance Imaging , Male , Middle Aged , Mitochondria/metabolism , Oxygen Consumption , Regression Analysis , Tremor/genetics
16.
Dis Model Mech ; 9(11): 1295-1305, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27638668

ABSTRACT

In combination with studies of post-mortem Parkinson's disease (PD) brains, pharmacological and genetic models of PD have suggested that two fundamental interacting cellular processes are impaired - proteostasis and mitochondrial respiration. We have re-examined the role of mitochondrial dysfunction in lymphoblasts isolated from individuals with idiopathic PD and an age-matched control group. As previously reported for various PD cell types, the production of reactive oxygen species (ROS) by PD lymphoblasts was significantly elevated. However, this was not due to an impairment of mitochondrial respiration, as is often assumed. Instead, basal mitochondrial respiration and ATP synthesis are dramatically elevated in PD lymphoblasts. The mitochondrial mass, genome copy number and membrane potential were unaltered, but the expression of indicative respiratory complex proteins was also elevated. This explains the increased oxygen consumption rates by each of the respiratory complexes in experimentally uncoupled mitochondria of iPD cells. However, it was not attributable to increased activity of the stress- and energy-sensing protein kinase AMPK, a regulator of mitochondrial biogenesis and activity. The respiratory differences between iPD and control cells were sufficiently dramatic as to provide a potentially sensitive and reliable biomarker of the disease state, unaffected by disease duration (time since diagnosis) or clinical severity. Lymphoblasts from control and PD individuals thus occupy two distinct, quasi-stable steady states; a 'normal' and a 'hyperactive' state characterized by two different metabolic rates. The apparent stability of the 'hyperactive' state in patient-derived lymphoblasts in the face of patient ageing, ongoing disease and mounting disease severity suggests an early, permanent switch to an alternative metabolic steady state. With its associated, elevated ROS production, the 'hyperactive' state might not cause pathology to cells that are rapidly turned over, but brain cells might accumulate long-term damage leading ultimately to neurodegeneration and the loss of mitochondrial function observed post-mortem. Whether the 'hyperactive' state in lymphoblasts is a biomarker specifically of PD or more generally of neurodegenerative disease remains to be determined.


Subject(s)
Lymphocytes/metabolism , Lymphocytes/pathology , Mitochondria/metabolism , Parkinson Disease/metabolism , Parkinson Disease/pathology , AMP-Activated Protein Kinases/metabolism , Adenosine Triphosphate/metabolism , Adult , Age Factors , Cell Line, Transformed , Cell Respiration , Gene Dosage , Genome , Humans , Membrane Potential, Mitochondrial , Oxidative Phosphorylation , Oxygen Consumption , Parkinson Disease/blood , Parkinson Disease/diagnosis , RNA, Messenger/genetics , RNA, Messenger/metabolism , ROC Curve , Reactive Oxygen Species/metabolism , Regression Analysis , Severity of Illness Index
18.
Clin Chem ; 60(7): 963-73, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24778142

ABSTRACT

BACKGROUND: Standard fragile X syndrome (FXS) diagnostic tests that target methylation of the fragile X mental retardation 1 (FMR1) CpG island 5' of the CGG expansion can be used to predict severity of the disease in males from birth, but not in females. METHODS: We describe methylation specific-quantitative melt analysis (MS-QMA) that targets 10 CpG sites, with 9 within FMR1 intron 1, to screen for FXS from birth in both sexes. The novel method combines the qualitative strengths of high-resolution melt and the high-throughput, quantitative real-time PCR standard curve to provide accurate quantification of DNA methylation in a single assay. Its performance was assessed in 312 control (CGG <40), 143 premutation (PM) (CGG 56-170), 197 full mutation (FM) (CGG 200-2000), and 33 CGG size and methylation mosaic samples. RESULTS: In male and female newborn blood spots, MS-QMA differentiated FM from control alleles, with sensitivity, specificity, and positive and negative predictive values between 92% and 100%. In venous blood of FM females between 6 and 35 years of age, MS-QMA correlated most strongly with verbal IQ impairment (P = 0.002). In the larger cohort of males and females, MS-QMA correlated with reference methods Southern blot and MALDI-TOF mass spectrometry (P < 0.05), but was not significantly correlated with age. Unmethylated alleles in high-functioning FM and PM males determined by both reference methods were also unmethylated by MS-QMA. CONCLUSIONS: MS-QMA has an immediate application in FXS diagnostics, with a potential use of its quantitative methylation output for prognosis in both sexes.


Subject(s)
Fragile X Syndrome/diagnosis , Adolescent , Adult , Aged , Aged, 80 and over , Case-Control Studies , Child , Child, Preschool , Cognition , Cohort Studies , Dried Blood Spot Testing , Early Diagnosis , Epigenesis, Genetic , Female , Fragile X Syndrome/blood , Fragile X Syndrome/genetics , Humans , Infant , Infant, Newborn , Introns , Male , Methylation , Middle Aged , Polymerase Chain Reaction/methods , Sensitivity and Specificity
19.
Neurodegener Dis ; 14(2): 67-76, 2014.
Article in English | MEDLINE | ID: mdl-24401315

ABSTRACT

BACKGROUND/AIMS: Alleles of the FMR1 gene containing small expansions of the CGG-trinucleotide repeat comprise premutation and grey-zone alleles. Premutation alleles may cause late-onset Fragile X-associated tremor/ataxia syndrome attributed to the neurotoxic effect of elevated FMR1 transcripts. Our earlier data suggested that both grey-zone and low-end premutation alleles might also play a significant role in the acquisition of the parkinsonian phenotype due to mitochondrial dysfunction caused by elevated FMR1 mRNA toxicity. These data were obtained through clinical and molecular comparisons between carriers of grey-zone/low-end premutation alleles and group-matched non-carrier controls from patients with idiopathic Parkinson's disease (iPD). We aimed to explore the relationship between grey-zone alleles, parkinsonism and white matter changes. METHODS: This study compared the extent and severity of white matter hyperintensity (WMH) on magnetic resonance imaging, using a semi-quantitative method, between 11 grey-zone/low-end premutation carriers and 20 non-carrier controls with iPD from our earlier study. Relationships between WMH scores, and cognitive and motor test scores were assessed for carriers and non-carriers. RESULTS: Supratentorial WMH scores, and tremor and ataxia motor scores were significantly higher in carriers compared with disease controls. Moreover, some associations between cognitive decline and WMH scores were specific for each respective carrier status category. CONCLUSIONS: The results support our earlier claim that grey-zone alleles contribute to the severity of parkinsonism and white matter changes.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Parkinson Disease/genetics , Parkinson Disease/pathology , Trinucleotide Repeat Expansion , White Matter/pathology , Aged , Aged, 80 and over , Alleles , Ataxia/diagnosis , Humans , Male , Middle Aged , Neuropsychological Tests , Pilot Projects
20.
Hum Mol Genet ; 22(8): 1516-24, 2013 Apr 15.
Article in English | MEDLINE | ID: mdl-23307923

ABSTRACT

Methylation of the fragile X-related epigenetic element 2 (FREE2) located on the exon 1/intron 1 boundary of the FMR1 gene is related to FMRP expression and cognitive impairment in full mutation (FM; CGG>200) individuals. We examined the relationship between age, the size of the FMR1 CGG expansion and the methylation output ratio (MOR) at 12 CpG sites proximal to the exon 1/intron 1 boundary using FREE2 MALDI-TOF MS. The patient cohort included 119 males and 368 females, i.e. 121 healthy controls (CGG<40), 176 premutation (CGG 55-170) and 190 FM (CGG 213-2000). For all CpG units examined, FM males showed a significantly elevated MOR compared with that in hypermethylated FM females. In FM males the MOR for most CpG units significantly positively correlated with both age and CGG size (P< 0.05). In FM females the skewing towards the unmethylated state was significant for half of the units between birth and puberty (P < 0.05). The methylation status of intron 1 CpG10-12 that was most significantly related to cognitive impairment in our earlier study, did not change significantly with age in FM females. These results challenge the concept of fragile X syndrome (FXS)-related methylation being static over time, and suggest that due to the preference for the unmethylated state in FM females, X-inactivation at this locus is not random. The findings also highlight that the prognostic value of FXS methylation testing is not uniform between all CpG sites, and thus may need to be evaluated on a site-by-site basis.


Subject(s)
Epigenesis, Genetic/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , RNA-Binding Proteins/genetics , X Chromosome Inactivation/genetics , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , Child , Child, Preschool , CpG Islands/genetics , Exons , Female , Humans , Infant , Infant, Newborn , Male , Methylation , Middle Aged , Mutation/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...