Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Microsyst Nanoeng ; 8: 54, 2022.
Article in English | MEDLINE | ID: mdl-35615464

ABSTRACT

Integrated valves enable automated control in microfluidic systems, as they can be applied for mixing, pumping and compartmentalization purposes. Such automation would be highly valuable for applications in organ-on-chip (OoC) systems. However, OoC systems typically have channel dimensions in the range of hundreds of micrometers, which is an order of magnitude larger than those of typical microfluidic valves. The most-used fabrication process for integrated, normally open polydimethylsiloxane (PDMS) valves requires a reflow photoresist that limits the achievable channel height. In addition, the low stroke volumes of these valves make it challenging to achieve flow rates of microliters per minute, which are typically required in OoC systems. Herein, we present a mechanical 'macrovalve' fabricated by multilayer soft lithography using micromilled direct molds. We demonstrate that these valves can close off rounded channels of up to 700 µm high and 1000 µm wide. Furthermore, we used these macrovalves to create a peristaltic pump with a pumping rate of up to 48 µL/min and a mixing and metering device that can achieve the complete mixing of a volume of 6.4 µL within only 17 s. An initial cell culture experiment demonstrated that a device with integrated macrovalves is biocompatible and allows the cell culture of endothelial cells over multiple days under continuous perfusion and automated medium refreshment.

2.
Small ; 15(46): e1902393, 2019 11.
Article in English | MEDLINE | ID: mdl-31497931

ABSTRACT

In vitro prediction of physiologically relevant transport of therapeutic molecules across the microcirculation represents an intriguing opportunity to predict efficacy in human populations. On-chip microvascular networks (MVNs) show physiologically relevant values of molecular permeability, yet like most systems, they lack an important contribution to transport: the ever-present fluid convection through the endothelium. Quantification of transport through the MVNs by current methods also requires confocal imaging and advanced analytical techniques, which can be a bottleneck in industry and academic laboratories. Here, it is shown that by recapitulating physiological transmural flow across the MVNs, the concentration of small and large molecule therapeutics can be directly sampled in the interstitial fluid and analyzed using standard analytical techniques. The magnitudes of transport measured in MVNs reveal trends with molecular size and type (protein versus nonprotein) that are expected in vivo, supporting the use of the MVNs platform as an in vitro tool to predict distribution of therapeutics in vivo.


Subject(s)
Extracellular Fluid/physiology , Microvessels/physiology , Regional Blood Flow/physiology , Blood Proteins/metabolism , Fluorescein-5-isothiocyanate/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Lab-On-A-Chip Devices , Perfusion , Permeability , Pressure , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...